Wrapped Lévy distribution

In probability theory and directional statistics, a wrapped Lévy distribution is a wrapped probability distribution that results from the "wrapping" of the Lévy distribution around the unit circle.

Description

The pdf of the wrapped Lévy distribution is

f W L ( θ ; μ , c ) = n = c 2 π e c / 2 ( θ + 2 π n μ ) ( θ + 2 π n μ ) 3 / 2 {\displaystyle f_{WL}(\theta ;\mu ,c)=\sum _{n=-\infty }^{\infty }{\sqrt {\frac {c}{2\pi }}}\,{\frac {e^{-c/2(\theta +2\pi n-\mu )}}{(\theta +2\pi n-\mu )^{3/2}}}}

where the value of the summand is taken to be zero when θ + 2 π n μ 0 {\displaystyle \theta +2\pi n-\mu \leq 0} , c {\displaystyle c} is the scale factor and μ {\displaystyle \mu } is the location parameter. Expressing the above pdf in terms of the characteristic function of the Lévy distribution yields:

f W L ( θ ; μ , c ) = 1 2 π n = e i n ( θ μ ) c | n | ( 1 i sgn n ) = 1 2 π ( 1 + 2 n = 1 e c n cos ( n ( θ μ ) c n ) ) {\displaystyle f_{WL}(\theta ;\mu ,c)={\frac {1}{2\pi }}\sum _{n=-\infty }^{\infty }e^{-in(\theta -\mu )-{\sqrt {c|n|}}\,(1-i\operatorname {sgn} {n})}={\frac {1}{2\pi }}\left(1+2\sum _{n=1}^{\infty }e^{-{\sqrt {cn}}}\cos \left(n(\theta -\mu )-{\sqrt {cn}}\,\right)\right)}

In terms of the circular variable z = e i θ {\displaystyle z=e^{i\theta }} the circular moments of the wrapped Lévy distribution are the characteristic function of the Lévy distribution evaluated at integer arguments:

z n = Γ e i n θ f W L ( θ ; μ , c ) d θ = e i n μ c | n | ( 1 i sgn ( n ) ) . {\displaystyle \langle z^{n}\rangle =\int _{\Gamma }e^{in\theta }\,f_{WL}(\theta ;\mu ,c)\,d\theta =e^{in\mu -{\sqrt {c|n|}}\,(1-i\operatorname {sgn}(n))}.}

where Γ {\displaystyle \Gamma \,} is some interval of length 2 π {\displaystyle 2\pi } . The first moment is then the expectation value of z, also known as the mean resultant, or mean resultant vector:

z = e i μ c ( 1 i ) {\displaystyle \langle z\rangle =e^{i\mu -{\sqrt {c}}(1-i)}}

The mean angle is

θ μ = A r g z = μ + c {\displaystyle \theta _{\mu }=\mathrm {Arg} \langle z\rangle =\mu +{\sqrt {c}}}

and the length of the mean resultant is

R = | z | = e c {\displaystyle R=|\langle z\rangle |=e^{-{\sqrt {c}}}}

See also

  • Wrapped distribution
  • Directional statistics

References

  • Fisher, N. I. (1996). Statistical Analysis of Circular Data. Cambridge University Press. ISBN 978-0-521-56890-6. Retrieved 2010-02-09.
  • v
  • t
  • e
Probability distributions (list)
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)DirectionalDegenerate
and singular
Degenerate
Dirac delta function
Singular
Cantor
Families
  • Category
  • Commons