ジップの法則

ジップの法則
確率密度関数
Plot of the Zipf PMF for N = 10
N = 10の両対数スケールのZipf確率密度関数。横軸は順位k。この関数はkの整数値のみについて定義されていることに注意。点間の接続線は連続であることを意味してはいない。)
累積分布関数
Plot of the Zipf CDF for N=10
N = 10のZipf累積分布関数。横軸は順位k。(この関数はkの整数値のみについて定義されていることに注意。点間の接続線は連続であることを意味してはいない。)
母数 s 0 {\displaystyle s\geq 0\,} (実数)
N { 1 , 2 , 3 } {\displaystyle N\in \{1,2,3\ldots \}} (整数)
k { 1 , 2 , , N } {\displaystyle k\in \{1,2,\ldots ,N\}}
確率密度関数 1 / k s H N , s {\displaystyle {\frac {1/k^{s}}{H_{N,s}}}} ここでHN,sN番目の一般化調和数
累積分布関数 H k , s H N , s {\displaystyle {\frac {H_{k,s}}{H_{N,s}}}}
期待値 H N , s 1 H N , s {\displaystyle {\frac {H_{N,s-1}}{H_{N,s}}}}
最頻値 1 {\displaystyle 1\,}
分散 H N , s 2 H N , s H N , s 1 2 H N , s 2 {\displaystyle {\frac {H_{N,s-2}}{H_{N,s}}}-{\frac {H_{N,s-1}^{2}}{H_{N,s}^{2}}}}
エントロピー s H N , s k = 1 N ln ( k ) k s + ln ( H N , s ) {\displaystyle {\frac {s}{H_{N,s}}}\sum \limits _{k=1}^{N}{\frac {\ln(k)}{k^{s}}}+\ln(H_{N,s})}
モーメント母関数 1 H N , s n = 1 N e n t n s {\displaystyle {\frac {1}{H_{N,s}}}\sum \limits _{n=1}^{N}{\frac {e^{nt}}{n^{s}}}}
特性関数 1 H N , s n = 1 N e i n t n s {\displaystyle {\frac {1}{H_{N,s}}}\sum \limits _{n=1}^{N}{\frac {e^{int}}{n^{s}}}}
テンプレートを表示
ウィキペディア(30ヶ国語版)における単語の出現頻度

ジップの法則(ジップのほうそく、Zipf's law)あるいはジフの法則とは、出現頻度が k 番目に大きい要素が、1位のものの頻度と比較して 1/k に比例するという経験則である。Zipf は「ジフ」と読まれることもある。また、この法則が機能する世界を「ジフ構造」と記する論者もいる。

包括的な理論的説明はまだ成功していないものの、様々な現象に適用できることが知られている。この法則に従う確率分布(離散分布)をジップ分布という。ジップ分布はゼータ分布(英語版)の特殊な形である。

この法則はアメリカの言語学者ジョージ・キングズリー・ジップに帰せられている。ジップ以前に似た観察をしていた先行研究としてFelix Auerbach(英語版)Jean-Baptiste Estoup(フランス語版)などの研究があり、ジップ自身もそのことを1942年の論文で紹介した[1]

法則が成立する現象の例

次のような様々な現象(自然現象、社会現象など)に成り立つ場合があることが確認されている:

論理的な定義

一般のジップの法則は

f ( k ; s , N ) = 1 / k s n = 1 N 1 / n s {\displaystyle f(k;s,N)={\frac {1/k^{s}}{\sum _{n=1}^{N}1/n^{s}}}}

(ただし N は全要素の数、k は順位)と書き表される。

ここで元来のジップの法則では s = 1 である。このとき N を無限大にすると分母は収束しない(無限大に発散する、「調和級数」を参照)ため、元来のジップの法則では N を有限としなければならない(現実にもそう考えられる場合が多い)。

ただし s が1より少しでも大きい実数ならば、N を無限大にしても分母は収束し(ゼータ関数 ζ(s) に等しい)、k の値を無限にとりうる分布関数とすることができる。

関連する概念

ジップの法則は冪乗則 (Power law) の一種である。また、ジップ分布は変数変換によりパレート分布(連続分布)と同じ形になることが示されている。パレート分布の離散型である。パレートの法則はパレート分布の特別な場合に当たり、また80-20の法則とも関係がある。順位規模の法則とも呼ばれる。

脚注

[脚注の使い方]
  1. ^ Zipf, George Kingsley (1942). “The Unity of Nature, Least-Action, and Natural Social Science”. Sociometry 5 (1): 48–62. doi:10.2307/2784953. ISSN 0038-0431. https://www.jstor.org/stable/2784953. 

関連項目

離散単変量で
有限台
離散単変量で
無限台
  • ベータ負二項(英語版)
  • ボレル(英語版)
  • コンウェイ–マクスウェル–ポワソン(英語版)
  • 離散位相型(英語版)
  • ドラポルト(英語版)
  • 拡張負二項(英語版)
  • ガウス–クズミン
  • 幾何
  • 対数(英語版)
  • 負の二項
  • 放物フラクタル(英語版)
  • ポワソン
  • スケラム(英語版)
  • ユール–サイモン(英語版)
  • ゼータ(英語版)
連続単変量で
有界区間に台を持つ
  • 逆正弦(英語版)
  • ARGUS(英語版)
  • バルディング–ニコルス(英語版)
  • ベイツ(英語版)
  • ベータ
  • beta rectangular(英語版)
  • アーウィン–ホール(英語版)
  • クマラスワミー(英語版)
  • ロジット-正規(英語版)
  • 非中心ベータ(英語版)
  • raised cosine(英語版)
  • reciprocal(英語版)
  • 三角
  • U-quadratic(英語版)
  • 一様
  • ウィグナー半円
連続単変量で
半無限区間に台を持つ
  • ベニーニ(英語版)
  • ベンクタンダー第一種(英語版)
  • ベンクタンダー第二種(英語版)
  • 第2種ベータ
  • Burr(英語版)
  • カイ二乗
  • カイ(英語版)
  • Dagum(英語版)
  • デービス(英語版)
  • 指数-対数(英語版)
  • アーラン
  • 指数
  • F
  • folded normal(英語版)
  • Flory–Schulz(英語版)
  • フレシェ
  • ガンマ
  • gamma/Gompertz(英語版)
  • 一般逆ガウス(英語版)
  • Gompertz(英語版)
  • half-logistic(英語版)
  • half-normal(英語版)
  • Hotelling's T-squared(英語版)
  • 超アーラン(英語版)
  • 超指数(英語版)
  • hypoexponential(英語版)
  • 逆カイ二乗(英語版)
    • scaled inverse chi-squared(英語版)
  • 逆ガウス
  • 逆ガンマ
  • コルモゴロフ
  • レヴィ
  • 対数コーシー
  • 対数ラプラス(英語版)
  • 対数ロジスティック(英語版)
  • 対数正規
  • ロマックス(英語版)
  • 行列指数(英語版)
  • マクスウェル–ボルツマン
  • マクスウェル–ユットナー(英語版)
  • ミッタク-レフラー(英語版)
  • 仲上(英語版)
  • 非心カイ二乗
  • パレート
  • 位相型(英語版)
  • poly-Weibull(英語版)
  • レイリー
  • relativistic Breit–Wigner(英語版)
  • ライス(英語版)
  • shifted Gompertz(英語版)
  • 切断正規
  • タイプ2ガンベル(英語版)
  • ワイブル
    • 離散ワイブル(英語版)
  • ウィルクスのラムダ(英語版)
連続単変量で
実数直線全体に台を持つ
連続単変量で
タイプの変わる台を持つ
  • 一般極値
  • 一般パレート(英語版)
  • マルチェンコ–パストゥール(英語版)
  • q-指数(英語版)
  • q-ガウス
  • q-ワイブル(英語版)
  • shifted log-logistic(英語版)
  • トゥーキーのラムダ(英語版)
混連続-離散単変量
  • rectified Gaussian(英語版)
多変量 (結合)
【離散】
エウェンズ(英語版)
多項
ディリクレ多項(英語版)
負多項(英語版)
【連続】
ディリクレ
一般ディリクレ(英語版)
多変量正規
多変量安定(英語版)
多変量 t(英語版)
正規逆ガンマ(英語版)
正規ガンマ(英語版)
行列値
逆行列ガンマ(英語版)
逆ウィッシャート(英語版)
行列正規(英語版)
行列 t(英語版)
行列ガンマ(英語版)
正規逆ウィッシャート(英語版)
正規ウィッシャート(英語版)
ウィッシャート
方向
【単変量 (円周) 方向
円周一様(英語版)
単変数フォン・ミーゼス
wrapped 正規(英語版)
wrapped コーシー(英語版)
wrapped 指数(英語版)
wrapped 非対称ラプラス(英語版)
wrapped レヴィ(英語版)
【二変量 (球面)】
ケント(英語版)
【二変量 (トロイダル)】
二変数フォン・ミーゼス(英語版)
【多変量】
フォン・ミーゼス–フィッシャー(英語版)
ビンガム(英語版)
退化特異
  • 円周(英語版)
  • 混合ポワソン(英語版)
  • 楕円(英語版)
  • 指数
  • 自然指数(英語版)
  • 位置尺度(英語版)
  • 最大エントロピー(英語版)
  • 混合(英語版)
  • ピアソン(英語版)
  • トウィーディ(英語版)
  • wrapped(英語版)
サンプリング法(英語版)
  • 一覧記事 一覧(英語版)
  • カテゴリ カテゴリ
典拠管理データベース: 国立図書館 ウィキデータを編集
  • ドイツ