Truncated pentahexagonal tiling

Truncated pentahexagonal tiling
Truncated pentahexagonal tiling
Poincaré disk model of the hyperbolic plane
Type Hyperbolic uniform tiling
Vertex configuration 4.10.12
Schläfli symbol tr{6,5} or t { 6 5 } {\displaystyle t{\begin{Bmatrix}6\\5\end{Bmatrix}}}
Wythoff symbol 2 6 5 |
Coxeter diagram
Symmetry group [6,5], (*652)
Dual Order 5-6 kisrhombille
Properties Vertex-transitive

In geometry, the truncated tetrahexagonal tiling is a semiregular tiling of the hyperbolic plane. There are one square, one decagon, and one dodecagon on each vertex. It has Schläfli symbol of t0,1,2{6,5}. Its name is somewhat misleading: literal geometric truncation of pentahexagonal tiling produces rectangles instead of squares.

Dual tiling

The dual tiling is called an order-5-6 kisrhombille tiling, made as a complete bisection of the order-5 hexagonal tiling, here with triangles shown in alternating colors. This tiling represents the fundamental triangular domains of [6,5] (*652) symmetry.

Symmetry

There are four small index subgroup from [6,5] by mirror removal and alternation. In these images fundamental domains are alternately colored black and white, and mirrors exist on the boundaries between colors.

Small index subgroups of [6,5], (*652)
Index 1 2 6
Diagram
Coxeter
(orbifold)
[6,5] =
(*652)
[1+,6,5] = =
(*553)
[6,5+] =
(5*3)
[6,5*] =
(*33333)
Direct subgroups
Index 2 4 12
Diagram
Coxeter
(orbifold)
[6,5]+ =
(652)
[6,5+]+ = =
(553)
[6,5*]+ =
(33333)

Related polyhedra and tilings

From a Wythoff construction there are fourteen hyperbolic uniform tilings that can be based from the regular order-5 hexagonal tiling.

Drawing the tiles colored as red on the original faces, yellow at the original vertices, and blue along the original edges, there are 7 forms with full [6,5] symmetry, and 3 with subsymmetry.

Uniform hexagonal/pentagonal tilings
  • v
  • t
  • e
Symmetry: [6,5], (*652) [6,5]+, (652) [6,5+], (5*3) [1+,6,5], (*553)
{6,5} t{6,5} r{6,5} 2t{6,5}=t{5,6} 2r{6,5}={5,6} rr{6,5} tr{6,5} sr{6,5} s{5,6} h{6,5}
Uniform duals
V65 V5.12.12 V5.6.5.6 V6.10.10 V56 V4.5.4.6 V4.10.12 V3.3.5.3.6 V3.3.3.5.3.5 V(3.5)5

See also

References

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.

External links

  • Weisstein, Eric W. "Hyperbolic tiling". MathWorld.
  • Weisstein, Eric W. "Poincaré hyperbolic disk". MathWorld.
  • Hyperbolic and Spherical Tiling Gallery
  • KaleidoTile 3: Educational software to create spherical, planar and hyperbolic tilings
  • Hyperbolic Planar Tessellations, Don Hatch
  • v
  • t
  • e


Other
Spherical
  • 2n
  • 33.n
  • V33.n
  • 42.n
  • V42.n
Regular
  • 2
  • 36
  • 44
  • 63
Semi-
regular
  • 32.4.3.4
  • V32.4.3.4
  • 33.42
  • 33.∞
  • 34.6
  • V34.6
  • 3.4.6.4
  • (3.6)2
  • 3.122
  • 42.∞
  • 4.6.12
  • 4.82
Hyper-
bolic
  • 32.4.3.5
  • 32.4.3.6
  • 32.4.3.7
  • 32.4.3.8
  • 32.4.3.∞
  • 32.5.3.5
  • 32.5.3.6
  • 32.6.3.6
  • 32.6.3.8
  • 32.7.3.7
  • 32.8.3.8
  • 33.4.3.4
  • 32.∞.3.∞
  • 34.7
  • 34.8
  • 34.∞
  • 35.4
  • 37
  • 38
  • 3
  • (3.4)3
  • (3.4)4
  • 3.4.62.4
  • 3.4.7.4
  • 3.4.8.4
  • 3.4.∞.4
  • 3.6.4.6
  • (3.7)2
  • (3.8)2
  • 3.142
  • 3.162
  • 3.∞2
  • 42.5.4
  • 42.6.4
  • 42.7.4
  • 42.8.4
  • 42.∞.4
  • 45
  • 46
  • 47
  • 48
  • 4
  • (4.5)2
  • (4.6)2
  • 4.6.12
  • 4.6.14
  • V4.6.14
  • 4.6.16
  • V4.6.16
  • 4.6.∞
  • (4.7)2
  • (4.8)2
  • 4.8.10
  • V4.8.10
  • 4.8.12
  • 4.8.14
  • 4.8.16
  • 4.8.∞
  • 4.102
  • 4.10.12
  • 4.122
  • 4.12.16
  • 4.142
  • 4.162
  • 4.∞2
  • 54
  • 55
  • 56
  • 5
  • 5.4.6.4
  • (5.6)2
  • 5.82
  • 5.102
  • 5.122
  • 64
  • 65
  • 66
  • 68
  • 6.4.8.4
  • (6.8)2
  • 6.82
  • 6.102
  • 6.122
  • 6.162
  • 73
  • 74
  • 77
  • 7.62
  • 7.82
  • 7.142
  • 83
  • 84
  • 86
  • 88
  • 8.62
  • 8.122
  • 8.162
  • 3
  • 4
  • 5
  • ∞.62
  • ∞.82