Cantic octagonal tiling

Cantic octagonal tiling
Cantic octagonal tiling
Poincaré disk model of the hyperbolic plane
Type Hyperbolic uniform tiling
Vertex configuration 3.6.4.6
Schläfli symbol h2{8,3}
Wythoff symbol 4 3 | 3
Coxeter diagram =
Symmetry group [(4,3,3)], (*433)
Dual Order-4-3-3 t12 dual tiling
Properties Vertex-transitive

In geometry, the tritetratrigonal tiling or shieldotritetragonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t1,2(4,3,3). It can also be named as a cantic octagonal tiling, h2{8,3}.

Dual tiling

Related polyhedra and tiling

Uniform (4,3,3) tilings
  • v
  • t
  • e
Symmetry: [(4,3,3)], (*433) [(4,3,3)]+, (433)
h{8,3}
t0(4,3,3)
r{3,8}1/2
t0,1(4,3,3)
h{8,3}
t1(4,3,3)
h2{8,3}
t1,2(4,3,3)
{3,8}1/2
t2(4,3,3)
h2{8,3}
t0,2(4,3,3)
t{3,8}1/2
t0,1,2(4,3,3)
s{3,8}1/2
s(4,3,3)
Uniform duals
V(3.4)3 V3.8.3.8 V(3.4)3 V3.6.4.6 V(3.3)4 V3.6.4.6 V6.6.8 V3.3.3.3.3.4
*n33 orbifold symmetries of cantic tilings: 3.6.n.6
  • v
  • t
  • e
Symmetry
*n32
[1+,2n,3]
= [(n,3,3)]
Spherical Euclidean Compact Hyperbolic Paracompact
*233
[1+,4,3]
= [3,3]
*333
[1+,6,3]
= [(3,3,3)]
*433
[1+,8,3]
= [(4,3,3)]
*533
[1+,10,3]
= [(5,3,3)]
*633...
[1+,12,3]
= [(6,3,3)]
*∞33
[1+,∞,3]
= [(∞,3,3)]
Coxeter
Schläfli
=
h2{4,3}
=
h2{6,3}
=
h2{8,3}
=
h2{10,3}
=
h2{12,3}
=
h2{∞,3}
Cantic
figure
Vertex 3.6.2.6 3.6.3.6 3.6.4.6 3.6.5.6 3.6.6.6 3.6..6

Domain
Wythoff 2 3 | 3 3 3 | 3 4 3 | 3 5 3 | 3 6 3 | 3 ∞ 3 | 3
Dual
figure
Face V3.6.2.6 V3.6.3.6 V3.6.4.6 V3.6.5.6 V3.6.6.6 V3.6.∞.6

References

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.

See also

Wikimedia Commons has media related to Uniform tiling 3-6-4-6.

External links

  • v
  • t
  • e


Other
Spherical
  • 2n
  • 33.n
  • V33.n
  • 42.n
  • V42.n
Regular
  • 2
  • 36
  • 44
  • 63
Semi-
regular
  • 32.4.3.4
  • V32.4.3.4
  • 33.42
  • 33.∞
  • 34.6
  • V34.6
  • 3.4.6.4
  • (3.6)2
  • 3.122
  • 42.∞
  • 4.6.12
  • 4.82
Hyper-
bolic
  • 32.4.3.5
  • 32.4.3.6
  • 32.4.3.7
  • 32.4.3.8
  • 32.4.3.∞
  • 32.5.3.5
  • 32.5.3.6
  • 32.6.3.6
  • 32.6.3.8
  • 32.7.3.7
  • 32.8.3.8
  • 33.4.3.4
  • 32.∞.3.∞
  • 34.7
  • 34.8
  • 34.∞
  • 35.4
  • 37
  • 38
  • 3
  • (3.4)3
  • (3.4)4
  • 3.4.62.4
  • 3.4.7.4
  • 3.4.8.4
  • 3.4.∞.4
  • 3.6.4.6
  • (3.7)2
  • (3.8)2
  • 3.142
  • 3.162
  • 3.∞2
  • 42.5.4
  • 42.6.4
  • 42.7.4
  • 42.8.4
  • 42.∞.4
  • 45
  • 46
  • 47
  • 48
  • 4
  • (4.5)2
  • (4.6)2
  • 4.6.12
  • 4.6.14
  • V4.6.14
  • 4.6.16
  • V4.6.16
  • 4.6.∞
  • (4.7)2
  • (4.8)2
  • 4.8.10
  • V4.8.10
  • 4.8.12
  • 4.8.14
  • 4.8.16
  • 4.8.∞
  • 4.102
  • 4.10.12
  • 4.122
  • 4.12.16
  • 4.142
  • 4.162
  • 4.∞2
  • 54
  • 55
  • 56
  • 5
  • 5.4.6.4
  • (5.6)2
  • 5.82
  • 5.102
  • 5.122
  • 64
  • 65
  • 66
  • 68
  • 6.4.8.4
  • (6.8)2
  • 6.82
  • 6.102
  • 6.122
  • 6.162
  • 73
  • 74
  • 77
  • 7.62
  • 7.82
  • 7.142
  • 83
  • 84
  • 86
  • 88
  • 8.62
  • 8.122
  • 8.162
  • 3
  • 4
  • 5
  • ∞.62
  • ∞.82


Stub icon

This hyperbolic geometry-related article is a stub. You can help Wikipedia by expanding it.

  • v
  • t
  • e