Order summable

In mathematics, specifically in order theory and functional analysis, a sequence of positive elements ( x i ) i = 1 {\displaystyle \left(x_{i}\right)_{i=1}^{\infty }} in a preordered vector space X {\displaystyle X} (that is, x i 0 {\displaystyle x_{i}\geq 0} for all i {\displaystyle i} ) is called order summable if sup n = 1 , 2 , i = 1 n x i {\displaystyle \sup _{n=1,2,\ldots }\sum _{i=1}^{n}x_{i}} exists in X {\displaystyle X} .[1] For any 1 p {\displaystyle 1\leq p\leq \infty } , we say that a sequence ( x i ) i = 1 {\displaystyle \left(x_{i}\right)_{i=1}^{\infty }} of positive elements of X {\displaystyle X} is of type p {\displaystyle \ell ^{p}} if there exists some z X {\displaystyle z\in X} and some sequence ( c i ) i = 1 {\displaystyle \left(c_{i}\right)_{i=1}^{\infty }} in p {\displaystyle \ell ^{p}} such that 0 x i c i z {\displaystyle 0\leq x_{i}\leq c_{i}z} for all i {\displaystyle i} .[1]

The notion of order summable sequences is related to the completeness of the order topology.

See also

  • Ordered topological vector space
  • Order topology (functional analysis) – Topology of an ordered vector space
  • Ordered vector space – Vector space with a partial order
  • Vector lattice – Partially ordered vector space, ordered as a latticePages displaying short descriptions of redirect targets

References

  1. ^ a b Schaefer & Wolff 1999, pp. 230–234.

Bibliography

  • Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN 978-1584888666. OCLC 144216834.
  • Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135.
  • v
  • t
  • e
Functional analysis (topicsglossary)
Spaces
Properties
TheoremsOperatorsAlgebrasOpen problemsApplicationsAdvanced topics
  • Category