Hilbert–Schmidt operator

Nuclear operator of order 2; a bounded operator A on a Hilbert space H such that tr(A*A) is finite

In mathematics, a Hilbert–Schmidt operator, named after David Hilbert and Erhard Schmidt, is a bounded operator A : H H {\displaystyle A\colon H\to H} that acts on a Hilbert space H {\displaystyle H} and has finite Hilbert–Schmidt norm

A HS 2   = def   i I A e i H 2 , {\displaystyle \|A\|_{\operatorname {HS} }^{2}\ {\stackrel {\text{def}}{=}}\ \sum _{i\in I}\|Ae_{i}\|_{H}^{2},}

where { e i : i I } {\displaystyle \{e_{i}:i\in I\}} is an orthonormal basis.[1][2] The index set I {\displaystyle I} need not be countable. However, the sum on the right must contain at most countably many non-zero terms, to have meaning.[3] This definition is independent of the choice of the orthonormal basis. In finite-dimensional Euclidean space, the Hilbert–Schmidt norm HS {\displaystyle \|\cdot \|_{\text{HS}}} is identical to the Frobenius norm.

||·||HS is well defined

The Hilbert–Schmidt norm does not depend on the choice of orthonormal basis. Indeed, if { e i } i I {\displaystyle \{e_{i}\}_{i\in I}} and { f j } j I {\displaystyle \{f_{j}\}_{j\in I}} are such bases, then

i A e i 2 = i , j | A e i , f j | 2 = i , j | e i , A f j | 2 = j A f j 2 . {\displaystyle \sum _{i}\|Ae_{i}\|^{2}=\sum _{i,j}\left|\langle Ae_{i},f_{j}\rangle \right|^{2}=\sum _{i,j}\left|\langle e_{i},A^{*}f_{j}\rangle \right|^{2}=\sum _{j}\|A^{*}f_{j}\|^{2}.}
If e i = f i , {\displaystyle e_{i}=f_{i},} then i A e i 2 = i A e i 2 . {\textstyle \sum _{i}\|Ae_{i}\|^{2}=\sum _{i}\|A^{*}e_{i}\|^{2}.} As for any bounded operator, A = A . {\displaystyle A=A^{**}.} Replacing A {\displaystyle A} with A {\displaystyle A^{*}} in the first formula, obtain i A e i 2 = j A f j 2 . {\textstyle \sum _{i}\|A^{*}e_{i}\|^{2}=\sum _{j}\|Af_{j}\|^{2}.} The independence follows.

Examples

An important class of examples is provided by Hilbert–Schmidt integral operators. Every bounded operator with a finite-dimensional range (these are called operators of finite rank) is a Hilbert–Schmidt operator. The identity operator on a Hilbert space is a Hilbert–Schmidt operator if and only if the Hilbert space is finite-dimensional. Given any x {\displaystyle x} and y {\displaystyle y} in H {\displaystyle H} , define x y : H H {\displaystyle x\otimes y:H\to H} by ( x y ) ( z ) = z , y x {\displaystyle (x\otimes y)(z)=\langle z,y\rangle x} , which is a continuous linear operator of rank 1 and thus a Hilbert–Schmidt operator; moreover, for any bounded linear operator A {\displaystyle A} on H {\displaystyle H} (and into H {\displaystyle H} ), Tr ( A ( x y ) ) = A x , y {\displaystyle \operatorname {Tr} \left(A\left(x\otimes y\right)\right)=\left\langle Ax,y\right\rangle } .[4]

If T : H H {\displaystyle T:H\to H} is a bounded compact operator with eigenvalues 1 , 2 , {\displaystyle \ell _{1},\ell _{2},\dots } of | T | = T T {\displaystyle |T|={\sqrt {T^{*}T}}} , where each eigenvalue is repeated as often as its multiplicity, then T {\displaystyle T} is Hilbert–Schmidt if and only if i = 1 i 2 < {\textstyle \sum _{i=1}^{\infty }\ell _{i}^{2}<\infty } , in which case the Hilbert–Schmidt norm of T {\displaystyle T} is T HS = i = 1 i 2 {\textstyle \left\|T\right\|_{\operatorname {HS} }={\sqrt {\sum _{i=1}^{\infty }\ell _{i}^{2}}}} .[5]

If k L 2 ( μ × μ ) {\displaystyle k\in L^{2}\left(\mu \times \mu \right)} , where ( X , Ω , μ ) {\displaystyle \left(X,\Omega ,\mu \right)} is a measure space, then the integral operator K : L 2 ( μ ) L 2 ( μ ) {\displaystyle K:L^{2}\left(\mu \right)\to L^{2}\left(\mu \right)} with kernel k {\displaystyle k} is a Hilbert–Schmidt operator and K HS = k 2 {\displaystyle \left\|K\right\|_{\operatorname {HS} }=\left\|k\right\|_{2}} .[5]

Space of Hilbert–Schmidt operators

The product of two Hilbert–Schmidt operators has finite trace-class norm; therefore, if A and B are two Hilbert–Schmidt operators, the Hilbert–Schmidt inner product can be defined as

A , B HS = Tr ( A B ) = i A e i , B e i . {\displaystyle \langle A,B\rangle _{\text{HS}}=\operatorname {Tr} (A^{*}B)=\sum _{i}\langle Ae_{i},Be_{i}\rangle .}

The Hilbert–Schmidt operators form a two-sided *-ideal in the Banach algebra of bounded operators on H. They also form a Hilbert space, denoted by BHS(H) or B2(H), which can be shown to be naturally isometrically isomorphic to the tensor product of Hilbert spaces

H H , {\displaystyle H^{*}\otimes H,}

where H is the dual space of H. The norm induced by this inner product is the Hilbert–Schmidt norm under which the space of Hilbert–Schmidt operators is complete (thus making it into a Hilbert space).[4] The space of all bounded linear operators of finite rank (i.e. that have a finite-dimensional range) is a dense subset of the space of Hilbert–Schmidt operators (with the Hilbert–Schmidt norm).[4]

The set of Hilbert–Schmidt operators is closed in the norm topology if, and only if, H is finite-dimensional.

Properties

  • Every Hilbert–Schmidt operator T : HH is a compact operator.[5]
  • A bounded linear operator T : HH is Hilbert–Schmidt if and only if the same is true of the operator | T | := T T {\textstyle \left|T\right|:={\sqrt {T^{*}T}}} , in which case the Hilbert–Schmidt norms of T and |T| are equal.[5]
  • Hilbert–Schmidt operators are nuclear operators of order 2, and are therefore compact operators.[5]
  • If S : H 1 H 2 {\displaystyle S:H_{1}\to H_{2}} and T : H 2 H 3 {\displaystyle T:H_{2}\to H_{3}} are Hilbert–Schmidt operators between Hilbert spaces then the composition T S : H 1 H 3 {\displaystyle T\circ S:H_{1}\to H_{3}} is a nuclear operator.[3]
  • If T : HH is a bounded linear operator then we have T T HS {\displaystyle \left\|T\right\|\leq \left\|T\right\|_{\operatorname {HS} }} .[5]
  • T is a Hilbert–Schmidt operator if and only if the trace Tr {\displaystyle \operatorname {Tr} } of the nonnegative self-adjoint operator T T {\displaystyle T^{*}T} is finite, in which case T HS 2 = Tr ( T T ) {\displaystyle \|T\|_{\text{HS}}^{2}=\operatorname {Tr} (T^{*}T)} .[1][2]
  • If T : HH is a bounded linear operator on H and S : HH is a Hilbert–Schmidt operator on H then S HS = S HS {\displaystyle \left\|S^{*}\right\|_{\operatorname {HS} }=\left\|S\right\|_{\operatorname {HS} }} , T S HS T S HS {\displaystyle \left\|TS\right\|_{\operatorname {HS} }\leq \left\|T\right\|\left\|S\right\|_{\operatorname {HS} }} , and S T HS S HS T {\displaystyle \left\|ST\right\|_{\operatorname {HS} }\leq \left\|S\right\|_{\operatorname {HS} }\left\|T\right\|} .[5] In particular, the composition of two Hilbert–Schmidt operators is again Hilbert–Schmidt (and even a trace class operator).[5]
  • The space of Hilbert–Schmidt operators on H is an ideal of the space of bounded operators B ( H ) {\displaystyle B\left(H\right)} that contains the operators of finite-rank.[5]
  • If A is a Hilbert–Schmidt operator on H then
    A HS 2 = i , j | e i , A e j | 2 = A 2 2 {\displaystyle \|A\|_{\text{HS}}^{2}=\sum _{i,j}|\langle e_{i},Ae_{j}\rangle |^{2}=\|A\|_{2}^{2}}
    where { e i : i I } {\displaystyle \{e_{i}:i\in I\}} is an orthonormal basis of H, and A 2 {\displaystyle \|A\|_{2}} is the Schatten norm of A {\displaystyle A} for p = 2. In Euclidean space, HS {\displaystyle \|\cdot \|_{\text{HS}}} is also called the Frobenius norm.

See also

References

  1. ^ a b Moslehian, M. S. "Hilbert–Schmidt Operator (From MathWorld)".
  2. ^ a b Voitsekhovskii, M. I. (2001) [1994], "Hilbert-Schmidt operator", Encyclopedia of Mathematics, EMS Press
  3. ^ a b Schaefer 1999, p. 177.
  4. ^ a b c Conway 1990, p. 268.
  5. ^ a b c d e f g h i Conway 1990, p. 267.
  • Conway, John B. (1990). A course in functional analysis. New York: Springer-Verlag. ISBN 978-0-387-97245-9. OCLC 21195908.
  • Schaefer, Helmut H. (1999). Topological Vector Spaces. GTM. Vol. 3. New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135.
  • v
  • t
  • e
Spaces
Properties
Theorems
Operators
Algebras
Open problems
Applications
Advanced topics
  • Category