Cone-saturated

(Learn how and when to remove this message)

In mathematics, specifically in order theory and functional analysis, if C {\displaystyle C} is a cone at 0 in a vector space X {\displaystyle X} such that 0 C , {\displaystyle 0\in C,} then a subset S X {\displaystyle S\subseteq X} is said to be C {\displaystyle C} -saturated if S = [ S ] C , {\displaystyle S=[S]_{C},} where [ S ] C := ( S + C ) ( S C ) . {\displaystyle [S]_{C}:=(S+C)\cap (S-C).} Given a subset S X , {\displaystyle S\subseteq X,} the C {\displaystyle C} -saturated hull of S {\displaystyle S} is the smallest C {\displaystyle C} -saturated subset of X {\displaystyle X} that contains S . {\displaystyle S.} [1] If F {\displaystyle {\mathcal {F}}} is a collection of subsets of X {\displaystyle X} then [ F ] C := { [ F ] C : F F } . {\displaystyle \left[{\mathcal {F}}\right]_{C}:=\left\{[F]_{C}:F\in {\mathcal {F}}\right\}.}

If T {\displaystyle {\mathcal {T}}} is a collection of subsets of X {\displaystyle X} and if F {\displaystyle {\mathcal {F}}} is a subset of T {\displaystyle {\mathcal {T}}} then F {\displaystyle {\mathcal {F}}} is a fundamental subfamily of T {\displaystyle {\mathcal {T}}} if every T T {\displaystyle T\in {\mathcal {T}}} is contained as a subset of some element of F . {\displaystyle {\mathcal {F}}.} If G {\displaystyle {\mathcal {G}}} is a family of subsets of a TVS X {\displaystyle X} then a cone C {\displaystyle C} in X {\displaystyle X} is called a G {\displaystyle {\mathcal {G}}} -cone if { [ G ] C ¯ : G G } {\displaystyle \left\{{\overline {[G]_{C}}}:G\in {\mathcal {G}}\right\}} is a fundamental subfamily of G {\displaystyle {\mathcal {G}}} and C {\displaystyle C} is a strict G {\displaystyle {\mathcal {G}}} -cone if { [ B ] C : B B } {\displaystyle \left\{[B]_{C}:B\in {\mathcal {B}}\right\}} is a fundamental subfamily of B . {\displaystyle {\mathcal {B}}.} [1]

C {\displaystyle C} -saturated sets play an important role in the theory of ordered topological vector spaces and topological vector lattices.

Properties

If X {\displaystyle X} is an ordered vector space with positive cone C {\displaystyle C} then [ S ] C = { [ x , y ] : x , y S } . {\displaystyle [S]_{C}=\bigcup \left\{[x,y]:x,y\in S\right\}.} [1]

The map S [ S ] C {\displaystyle S\mapsto [S]_{C}} is increasing; that is, if R S {\displaystyle R\subseteq S} then [ R ] C [ S ] C . {\displaystyle [R]_{C}\subseteq [S]_{C}.} If S {\displaystyle S} is convex then so is [ S ] C . {\displaystyle [S]_{C}.} When X {\displaystyle X} is considered as a vector field over R , {\displaystyle \mathbb {R} ,} then if S {\displaystyle S} is balanced then so is [ S ] C . {\displaystyle [S]_{C}.} [1]

If F {\displaystyle {\mathcal {F}}} is a filter base (resp. a filter) in X {\displaystyle X} then the same is true of [ F ] C := { [ F ] C : F F } . {\displaystyle \left[{\mathcal {F}}\right]_{C}:=\left\{[F]_{C}:F\in {\mathcal {F}}\right\}.}

See also

References

  1. ^ a b c d Schaefer & Wolff 1999, pp. 215–222.

Bibliography

  • v
  • t
  • e
Functional analysis (topicsglossary)
Spaces
Properties
Theorems
Operators
Algebras
Open problems
Applications
Advanced topics
  • Category
  • v
  • t
  • e
Basic concepts
Types of orders/spaces
Types of elements/subsets
Topologies/Convergence
Operators
Main results