LB-space

In mathematics, an LB-space, also written (LB)-space, is a topological vector space X {\displaystyle X} that is a locally convex inductive limit of a countable inductive system ( X n , i n m ) {\displaystyle (X_{n},i_{nm})} of Banach spaces. This means that X {\displaystyle X} is a direct limit of a direct system ( X n , i n m ) {\displaystyle \left(X_{n},i_{nm}\right)} in the category of locally convex topological vector spaces and each X n {\displaystyle X_{n}} is a Banach space.

If each of the bonding maps i n m {\displaystyle i_{nm}} is an embedding of TVSs then the LB-space is called a strict LB-space. This means that the topology induced on X n {\displaystyle X_{n}} by X n + 1 {\displaystyle X_{n+1}} is identical to the original topology on X n . {\displaystyle X_{n}.} [1] Some authors (e.g. Schaefer) define the term "LB-space" to mean "strict LB-space."

Definition

The topology on X {\displaystyle X} can be described by specifying that an absolutely convex subset U {\displaystyle U} is a neighborhood of 0 {\displaystyle 0} if and only if U X n {\displaystyle U\cap X_{n}} is an absolutely convex neighborhood of 0 {\displaystyle 0} in X n {\displaystyle X_{n}} for every n . {\displaystyle n.}

Properties

A strict LB-space is complete,[2] barrelled,[2] and bornological[2] (and thus ultrabornological).

Examples

If D {\displaystyle D} is a locally compact topological space that is countable at infinity (that is, it is equal to a countable union of compact subspaces) then the space C c ( D ) {\displaystyle C_{c}(D)} of all continuous, complex-valued functions on D {\displaystyle D} with compact support is a strict LB-space.[3] For any compact subset K D , {\displaystyle K\subseteq D,} let C c ( K ) {\displaystyle C_{c}(K)} denote the Banach space of complex-valued functions that are supported by K {\displaystyle K} with the uniform norm and order the family of compact subsets of D {\displaystyle D} by inclusion.[3]

Final topology on the direct limit of finite-dimensional Euclidean spaces

Let

R   :=   { ( x 1 , x 2 , ) R N   :    all but finitely many  x i  are equal to 0  } , {\displaystyle {\begin{alignedat}{4}\mathbb {R} ^{\infty }~&:=~\left\{\left(x_{1},x_{2},\ldots \right)\in \mathbb {R} ^{\mathbb {N} }~:~{\text{ all but finitely many }}x_{i}{\text{ are equal to 0 }}\right\},\end{alignedat}}}

denote the space of finite sequences, where R N {\displaystyle \mathbb {R} ^{\mathbb {N} }} denotes the space of all real sequences. For every natural number n N , {\displaystyle n\in \mathbb {N} ,} let R n {\displaystyle \mathbb {R} ^{n}} denote the usual Euclidean space endowed with the Euclidean topology and let In R n : R n R {\displaystyle \operatorname {In} _{\mathbb {R} ^{n}}:\mathbb {R} ^{n}\to \mathbb {R} ^{\infty }} denote the canonical inclusion defined by In R n ( x 1 , , x n ) := ( x 1 , , x n , 0 , 0 , ) {\displaystyle \operatorname {In} _{\mathbb {R} ^{n}}\left(x_{1},\ldots ,x_{n}\right):=\left(x_{1},\ldots ,x_{n},0,0,\ldots \right)} so that its image is

Im ( In R n ) = { ( x 1 , , x n , 0 , 0 , )   :   x 1 , , x n R } = R n × { ( 0 , 0 , ) } {\displaystyle \operatorname {Im} \left(\operatorname {In} _{\mathbb {R} ^{n}}\right)=\left\{\left(x_{1},\ldots ,x_{n},0,0,\ldots \right)~:~x_{1},\ldots ,x_{n}\in \mathbb {R} \right\}=\mathbb {R} ^{n}\times \left\{(0,0,\ldots )\right\}}

and consequently,

R = n N Im ( In R n ) . {\displaystyle \mathbb {R} ^{\infty }=\bigcup _{n\in \mathbb {N} }\operatorname {Im} \left(\operatorname {In} _{\mathbb {R} ^{n}}\right).}

Endow the set R {\displaystyle \mathbb {R} ^{\infty }} with the final topology τ {\displaystyle \tau ^{\infty }} induced by the family F := { In R n   :   n N } {\displaystyle {\mathcal {F}}:=\left\{\;\operatorname {In} _{\mathbb {R} ^{n}}~:~n\in \mathbb {N} \;\right\}} of all canonical inclusions. With this topology, R {\displaystyle \mathbb {R} ^{\infty }} becomes a complete Hausdorff locally convex sequential topological vector space that is not a Fréchet–Urysohn space. The topology τ {\displaystyle \tau ^{\infty }} is strictly finer than the subspace topology induced on R {\displaystyle \mathbb {R} ^{\infty }} by R N , {\displaystyle \mathbb {R} ^{\mathbb {N} },} where R N {\displaystyle \mathbb {R} ^{\mathbb {N} }} is endowed with its usual product topology. Endow the image Im ( In R n ) {\displaystyle \operatorname {Im} \left(\operatorname {In} _{\mathbb {R} ^{n}}\right)} with the final topology induced on it by the bijection In R n : R n Im ( In R n ) ; {\displaystyle \operatorname {In} _{\mathbb {R} ^{n}}:\mathbb {R} ^{n}\to \operatorname {Im} \left(\operatorname {In} _{\mathbb {R} ^{n}}\right);} that is, it is endowed with the Euclidean topology transferred to it from R n {\displaystyle \mathbb {R} ^{n}} via In R n . {\displaystyle \operatorname {In} _{\mathbb {R} ^{n}}.} This topology on Im ( In R n ) {\displaystyle \operatorname {Im} \left(\operatorname {In} _{\mathbb {R} ^{n}}\right)} is equal to the subspace topology induced on it by ( R , τ ) . {\displaystyle \left(\mathbb {R} ^{\infty },\tau ^{\infty }\right).} A subset S R {\displaystyle S\subseteq \mathbb {R} ^{\infty }} is open (resp. closed) in ( R , τ ) {\displaystyle \left(\mathbb {R} ^{\infty },\tau ^{\infty }\right)} if and only if for every n N , {\displaystyle n\in \mathbb {N} ,} the set S Im ( In R n ) {\displaystyle S\cap \operatorname {Im} \left(\operatorname {In} _{\mathbb {R} ^{n}}\right)} is an open (resp. closed) subset of Im ( In R n ) . {\displaystyle \operatorname {Im} \left(\operatorname {In} _{\mathbb {R} ^{n}}\right).} The topology τ {\displaystyle \tau ^{\infty }} is coherent with family of subspaces S := { Im ( In R n )   :   n N } . {\displaystyle \mathbb {S} :=\left\{\;\operatorname {Im} \left(\operatorname {In} _{\mathbb {R} ^{n}}\right)~:~n\in \mathbb {N} \;\right\}.} This makes ( R , τ ) {\displaystyle \left(\mathbb {R} ^{\infty },\tau ^{\infty }\right)} into an LB-space. Consequently, if v R {\displaystyle v\in \mathbb {R} ^{\infty }} and v {\displaystyle v_{\bullet }} is a sequence in R {\displaystyle \mathbb {R} ^{\infty }} then v v {\displaystyle v_{\bullet }\to v} in ( R , τ ) {\displaystyle \left(\mathbb {R} ^{\infty },\tau ^{\infty }\right)} if and only if there exists some n N {\displaystyle n\in \mathbb {N} } such that both v {\displaystyle v} and v {\displaystyle v_{\bullet }} are contained in Im ( In R n ) {\displaystyle \operatorname {Im} \left(\operatorname {In} _{\mathbb {R} ^{n}}\right)} and v v {\displaystyle v_{\bullet }\to v} in Im ( In R n ) . {\displaystyle \operatorname {Im} \left(\operatorname {In} _{\mathbb {R} ^{n}}\right).}

Often, for every n N , {\displaystyle n\in \mathbb {N} ,} the canonical inclusion In R n {\displaystyle \operatorname {In} _{\mathbb {R} ^{n}}} is used to identify R n {\displaystyle \mathbb {R} ^{n}} with its image Im ( In R n ) {\displaystyle \operatorname {Im} \left(\operatorname {In} _{\mathbb {R} ^{n}}\right)} in R ; {\displaystyle \mathbb {R} ^{\infty };} explicitly, the elements ( x 1 , , x n ) R n {\displaystyle \left(x_{1},\ldots ,x_{n}\right)\in \mathbb {R} ^{n}} and ( x 1 , , x n , 0 , 0 , 0 , ) {\displaystyle \left(x_{1},\ldots ,x_{n},0,0,0,\ldots \right)} are identified together. Under this identification, ( ( R , τ ) , ( In R n ) n N ) {\displaystyle \left(\left(\mathbb {R} ^{\infty },\tau ^{\infty }\right),\left(\operatorname {In} _{\mathbb {R} ^{n}}\right)_{n\in \mathbb {N} }\right)} becomes a direct limit of the direct system ( ( R n ) n N , ( In R m R n ) m n  in  N , N ) , {\displaystyle \left(\left(\mathbb {R} ^{n}\right)_{n\in \mathbb {N} },\left(\operatorname {In} _{\mathbb {R} ^{m}}^{\mathbb {R} ^{n}}\right)_{m\leq n{\text{ in }}\mathbb {N} },\mathbb {N} \right),} where for every m n , {\displaystyle m\leq n,} the map In R m R n : R m R n {\displaystyle \operatorname {In} _{\mathbb {R} ^{m}}^{\mathbb {R} ^{n}}:\mathbb {R} ^{m}\to \mathbb {R} ^{n}} is the canonical inclusion defined by In R m R n ( x 1 , , x m ) := ( x 1 , , x m , 0 , , 0 ) , {\displaystyle \operatorname {In} _{\mathbb {R} ^{m}}^{\mathbb {R} ^{n}}\left(x_{1},\ldots ,x_{m}\right):=\left(x_{1},\ldots ,x_{m},0,\ldots ,0\right),} where there are n m {\displaystyle n-m} trailing zeros.

Counter-examples

There exists a bornological LB-space whose strong bidual is not bornological.[4] There exists an LB-space that is not quasi-complete.[4]

See also

  • DF-space – class of special local-convex spacePages displaying wikidata descriptions as a fallback
  • Direct limit – Special case of colimit in category theory
  • Final topology – Finest topology making some functions continuous
  • F-space – Topological vector space with a complete translation-invariant metric
  • LF-space – Topological vector space

Citations

  1. ^ Schaefer & Wolff 1999, pp. 55–61.
  2. ^ a b c Schaefer & Wolff 1999, pp. 60–63.
  3. ^ a b Schaefer & Wolff 1999, pp. 57–58.
  4. ^ a b Khaleelulla 1982, pp. 28–63.

References

  • Adasch, Norbert; Ernst, Bruno; Keim, Dieter (1978). Topological Vector Spaces: The Theory Without Convexity Conditions. Lecture Notes in Mathematics. Vol. 639. Berlin New York: Springer-Verlag. ISBN 978-3-540-08662-8. OCLC 297140003.
  • Bierstedt, Klaus-Dieter (1988). "An Introduction to Locally Convex Inductive Limits". Functional Analysis and Applications. Singapore-New Jersey-Hong Kong: Universitätsbibliothek: 35–133. Retrieved 20 September 2020.
  • Bourbaki, Nicolas (1987) [1981]. Topological Vector Spaces: Chapters 1–5. Éléments de mathématique. Translated by Eggleston, H.G.; Madan, S. Berlin New York: Springer-Verlag. ISBN 3-540-13627-4. OCLC 17499190.
  • Dugundji, James (1966). Topology. Boston: Allyn and Bacon. ISBN 978-0-697-06889-7. OCLC 395340485.
  • Edwards, Robert E. (1995). Functional Analysis: Theory and Applications. New York: Dover Publications. ISBN 978-0-486-68143-6. OCLC 30593138.
  • Grothendieck, Alexander (1955). "Produits Tensoriels Topologiques et Espaces Nucléaires" [Topological Tensor Products and Nuclear Spaces]. Memoirs of the American Mathematical Society Series (in French). 16. Providence: American Mathematical Society. ISBN 978-0-8218-1216-7. MR 0075539. OCLC 1315788.
  • Horváth, John (1966). Topological Vector Spaces and Distributions. Addison-Wesley series in mathematics. Vol. 1. Reading, MA: Addison-Wesley Publishing Company. ISBN 978-0201029857.
  • Jarchow, Hans (1981). Locally convex spaces. Stuttgart: B.G. Teubner. ISBN 978-3-519-02224-4. OCLC 8210342.
  • Khaleelulla, S. M. (1982). Counterexamples in Topological Vector Spaces. Lecture Notes in Mathematics. Vol. 936. Berlin, Heidelberg, New York: Springer-Verlag. ISBN 978-3-540-11565-6. OCLC 8588370.
  • Köthe, Gottfried (1983) [1969]. Topological Vector Spaces I. Grundlehren der mathematischen Wissenschaften. Vol. 159. Translated by Garling, D.J.H. New York: Springer Science & Business Media. ISBN 978-3-642-64988-2. MR 0248498. OCLC 840293704.
  • Köthe, Gottfried (1979). Topological Vector Spaces II. Grundlehren der mathematischen Wissenschaften. Vol. 237. New York: Springer Science & Business Media. ISBN 978-0-387-90400-9. OCLC 180577972.
  • Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN 978-1584888666. OCLC 144216834.
  • Robertson, Alex P.; Robertson, Wendy J. (1980). Topological Vector Spaces. Cambridge Tracts in Mathematics. Vol. 53. Cambridge England: Cambridge University Press. ISBN 978-0-521-29882-7. OCLC 589250.
  • Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135.
  • Swartz, Charles (1992). An introduction to Functional Analysis. New York: M. Dekker. ISBN 978-0-8247-8643-4. OCLC 24909067.
  • Trèves, François (2006) [1967]. Topological Vector Spaces, Distributions and Kernels. Mineola, N.Y.: Dover Publications. ISBN 978-0-486-45352-1. OCLC 853623322.
  • Wilansky, Albert (2013). Modern Methods in Topological Vector Spaces. Mineola, New York: Dover Publications, Inc. ISBN 978-0-486-49353-4. OCLC 849801114.
  • v
  • t
  • e
Spaces
Properties
TheoremsOperatorsAlgebrasOpen problemsApplicationsAdvanced topics
  • Category
  • v
  • t
  • e
Basic concepts
Main results
Maps
Types of sets
Set operations
Types of TVSs
  • Category