Ptak space

A locally convex topological vector space (TVS) X {\displaystyle X} is B-complete or a Ptak space if every subspace Q X {\displaystyle Q\subseteq X^{\prime }} is closed in the weak-* topology on X {\displaystyle X^{\prime }} (i.e. X σ {\displaystyle X_{\sigma }^{\prime }} or σ ( X , X ) {\displaystyle \sigma \left(X^{\prime },X\right)} ) whenever Q A {\displaystyle Q\cap A} is closed in A {\displaystyle A} (when A {\displaystyle A} is given the subspace topology from X σ {\displaystyle X_{\sigma }^{\prime }} ) for each equicontinuous subset A X {\displaystyle A\subseteq X^{\prime }} .[1]

B-completeness is related to B r {\displaystyle B_{r}} -completeness, where a locally convex TVS X {\displaystyle X} is B r {\displaystyle B_{r}} -complete if every dense subspace Q X {\displaystyle Q\subseteq X^{\prime }} is closed in X σ {\displaystyle X_{\sigma }^{\prime }} whenever Q A {\displaystyle Q\cap A} is closed in A {\displaystyle A} (when A {\displaystyle A} is given the subspace topology from X σ {\displaystyle X_{\sigma }^{\prime }} ) for each equicontinuous subset A X {\displaystyle A\subseteq X^{\prime }} .[1]

Characterizations

Throughout this section, X {\displaystyle X} will be a locally convex topological vector space (TVS).

The following are equivalent:

  1. X {\displaystyle X} is a Ptak space.
  2. Every continuous nearly open linear map of X {\displaystyle X} into any locally convex space Y {\displaystyle Y} is a topological homomorphism.[2]
  • A linear map u : X Y {\displaystyle u:X\to Y} is called nearly open if for each neighborhood U {\displaystyle U} of the origin in X {\displaystyle X} , u ( U ) {\displaystyle u(U)} is dense in some neighborhood of the origin in u ( X ) . {\displaystyle u(X).}

The following are equivalent:

  1. X {\displaystyle X} is B r {\displaystyle B_{r}} -complete.
  2. Every continuous biunivocal, nearly open linear map of X {\displaystyle X} into any locally convex space Y {\displaystyle Y} is a TVS-isomorphism.[2]

Properties

Every Ptak space is complete. However, there exist complete Hausdorff locally convex space that are not Ptak spaces.

Homomorphism Theorem — Every continuous linear map from a Ptak space onto a barreled space is a topological homomorphism.[3]

Let u {\displaystyle u} be a nearly open linear map whose domain is dense in a B r {\displaystyle B_{r}} -complete space X {\displaystyle X} and whose range is a locally convex space Y {\displaystyle Y} . Suppose that the graph of u {\displaystyle u} is closed in X × Y {\displaystyle X\times Y} . If u {\displaystyle u} is injective or if X {\displaystyle X} is a Ptak space then u {\displaystyle u} is an open map.[4]

Examples and sufficient conditions

There exist Br-complete spaces that are not B-complete.

Every Fréchet space is a Ptak space. The strong dual of a reflexive Fréchet space is a Ptak space.

Every closed vector subspace of a Ptak space (resp. a Br-complete space) is a Ptak space (resp. a B r {\displaystyle B_{r}} -complete space).[1] and every Hausdorff quotient of a Ptak space is a Ptak space.[4] If every Hausdorff quotient of a TVS X {\displaystyle X} is a Br-complete space then X {\displaystyle X} is a B-complete space.

If X {\displaystyle X} is a locally convex space such that there exists a continuous nearly open surjection u : P X {\displaystyle u:P\to X} from a Ptak space, then X {\displaystyle X} is a Ptak space.[3]

If a TVS X {\displaystyle X} has a closed hyperplane that is B-complete (resp. Br-complete) then X {\displaystyle X} is B-complete (resp. Br-complete).

See also

  • Barreled space – Type of topological vector spacePages displaying short descriptions of redirect targets

Notes

References

  1. ^ a b c Schaefer & Wolff 1999, p. 162.
  2. ^ a b Schaefer & Wolff 1999, p. 163.
  3. ^ a b Schaefer & Wolff 1999, p. 164.
  4. ^ a b Schaefer & Wolff 1999, p. 165.

Bibliography

  • Husain, Taqdir; Khaleelulla, S. M. (1978). Barrelledness in Topological and Ordered Vector Spaces. Lecture Notes in Mathematics. Vol. 692. Berlin, New York, Heidelberg: Springer-Verlag. ISBN 978-3-540-09096-0. OCLC 4493665.
  • Khaleelulla, S. M. (1982). Counterexamples in Topological Vector Spaces. Lecture Notes in Mathematics. Vol. 936. Berlin, Heidelberg, New York: Springer-Verlag. ISBN 978-3-540-11565-6. OCLC 8588370.
  • Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN 978-1584888666. OCLC 144216834.
  • Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135.

External links

  • Nuclear space at ncatlab
  • v
  • t
  • e
Basic conceptsMain resultsMapsTypes of setsSet operationsTypes of TVSs
  • Category