Dilogaritmen

Dilogaritmen är en speciell funktion som är ett specialfall av polylogaritmen. Den definieras som

Li 2 ( z ) = 0 z ln ( 1 u ) u d u z C [ 1 , ) {\displaystyle \operatorname {Li} _{2}(z)=-\int _{0}^{z}{\ln(1-u) \over u}\,\mathrm {d} u{\text{, }}z\in \mathbb {C} \setminus [1,\infty )}

För | z | < 1 {\displaystyle |z|<1} kan den definieras som den oändliga serien

Li 2 ( z ) = k = 1 z k k 2 . {\displaystyle \operatorname {Li} _{2}(z)=\sum _{k=1}^{\infty }{z^{k} \over k^{2}}.}

Identiteter

Li 2 ( z ) + Li 2 ( z ) = 1 2 Li 2 ( z 2 ) {\displaystyle \operatorname {Li} _{2}(z)+\operatorname {Li} _{2}(-z)={\textstyle {\frac {1}{2}}}\operatorname {Li} _{2}(z^{2})}
Li 2 ( 1 z ) + Li 2 ( 1 1 z ) = 1 2 ln 2 z {\displaystyle \operatorname {Li} _{2}(1-z)+\operatorname {Li} _{2}\left(1-{\frac {1}{z}}\right)=-{\textstyle {\frac {1}{2}}}\ln ^{2}{z}}
Li 2 ( z ) + Li 2 ( 1 z ) = 1 6 π 2 ln z ln ( 1 z ) {\displaystyle \operatorname {Li} _{2}(z)+\operatorname {Li} _{2}(1-z)={\textstyle {\frac {1}{6}}}\pi ^{2}-\ln z\;\ln(1-z)}
Li 2 ( z ) + Li 2 ( z 1 + z ) = 1 2 ln 2 ( 1 + z ) {\displaystyle \operatorname {Li} _{2}(-z)+\operatorname {Li} _{2}\left({\frac {z}{1+z}}\right)=-{\textstyle {\frac {1}{2}}}{\ln ^{2}(1+z)}}
Li 2 ( z ) Li 2 ( 1 z ) + 1 2 Li 2 ( 1 z 2 ) = 1 12 π 2 ln z ln ( 1 + z ) {\displaystyle \operatorname {Li} _{2}(-z)-\operatorname {Li} _{2}(1-z)+{\textstyle {\frac {1}{2}}}\operatorname {Li} _{2}(1-z^{2})=-{\textstyle {\frac {1}{12}}}\pi ^{2}-\ln z\ln(1+z)}
Li 2 ( z ) + Li 2 ( 1 z ) = 1 6 π 2 1 2 ln 2 z {\displaystyle \operatorname {Li} _{2}(-z)+\operatorname {Li} _{2}\left(-{\frac {1}{z}}\right)=-{\textstyle {\frac {1}{6}}}\pi ^{2}-{\textstyle {\frac {1}{2}}}\ln ^{2}{z}}

För x > 1 {\displaystyle x>1} ,

Li 2 ( x ) + Li 2 ( 1 x ) = 1 3 π 2 1 2 ln 2 x i π ln x {\displaystyle \operatorname {Li} _{2}(x)+\operatorname {Li} _{2}\left({\frac {1}{x}}\right)={\textstyle {\frac {1}{3}}}\pi ^{2}-{\textstyle {\frac {1}{2}}}\ln ^{2}{x}-{\rm {i}}\pi \ln {x}}
Li 2 ( x y ) = Li 2 ( x ) + Li 2 ( y ) Li 2 ( x ( 1 y ) 1 x y ) Li 2 ( y ( 1 x ) 1 x y ) ln ( 1 x 1 x y ) ln ( 1 y 1 x y ) {\displaystyle \operatorname {Li} _{2}(xy)=\operatorname {Li} _{2}(x)+\operatorname {Li} _{2}(y)-\operatorname {Li} _{2}\left({\frac {x(1-y)}{1-xy}}\right)-\operatorname {Li} _{2}\left({\frac {y(1-x)}{1-xy}}\right)-\ln \left({\frac {1-x}{1-xy}}\right)\ln \left({\frac {1-y}{1-xy}}\right)}

Speciella värden

Li 2 ( 1 ) = π 2 12 {\displaystyle \operatorname {Li} _{2}(-1)=-{\frac {{\pi }^{2}}{12}}}
Li 2 ( 0 ) = 0 {\displaystyle \operatorname {Li} _{2}(0)=0}
Li 2 ( 1 2 ) = π 2 12 ln 2 2 2 {\displaystyle \operatorname {Li} _{2}\left({\frac {1}{2}}\right)={\frac {{\pi }^{2}}{12}}-{\frac {\ln ^{2}2}{2}}}
Li 2 ( 1 ) = π 2 6 {\displaystyle \operatorname {Li} _{2}(1)={\frac {{\pi }^{2}}{6}}}
Li 2 ( 2 ) = π 2 4 i π ln 2 {\displaystyle \operatorname {Li} _{2}(2)={\frac {{\pi }^{2}}{4}}-i\pi \ln 2}
Li 2 ( 5 1 2 ) = π 2 15 + 1 2 ln 2 5 1 2 {\displaystyle \operatorname {Li} _{2}\left(-{\frac {{\sqrt {5}}-1}{2}}\right)=-{\frac {{\pi }^{2}}{15}}+{\frac {1}{2}}\ln ^{2}{\frac {{\sqrt {5}}-1}{2}}}
= π 2 15 + 1 2 arcsch 2 2 {\displaystyle =-{\frac {{\pi }^{2}}{15}}+{\frac {1}{2}}\operatorname {arcsch} ^{2}2}
Li 2 ( 5 + 1 2 ) = π 2 10 ln 2 5 + 1 2 {\displaystyle \operatorname {Li} _{2}\left(-{\frac {{\sqrt {5}}+1}{2}}\right)=-{\frac {{\pi }^{2}}{10}}-\ln ^{2}{\frac {{\sqrt {5}}+1}{2}}}
= π 2 10 arcsch 2 2 {\displaystyle =-{\frac {{\pi }^{2}}{10}}-\operatorname {arcsch} ^{2}2}
Li 2 ( 3 + 5 2 ) = π 2 15 1 2 ln 2 5 1 2 {\displaystyle \operatorname {Li} _{2}\left({\frac {3+{\sqrt {5}}}{2}}\right)={\frac {{\pi }^{2}}{15}}-{\frac {1}{2}}\ln ^{2}{\frac {{\sqrt {5}}-1}{2}}}
= π 2 15 1 2 arcsch 2 2 {\displaystyle ={\frac {{\pi }^{2}}{15}}-{\frac {1}{2}}\operatorname {arcsch} ^{2}2}
Li 2 ( 5 + 1 2 ) = π 2 10 ln 2 5 1 2 {\displaystyle \operatorname {Li} _{2}\left({\frac {{\sqrt {5}}+1}{2}}\right)={\frac {{\pi }^{2}}{10}}-\ln ^{2}{\frac {{\sqrt {5}}-1}{2}}}
= π 2 10 arcsch 2 2 {\displaystyle ={\frac {{\pi }^{2}}{10}}-\operatorname {arcsch} ^{2}2}
Li 2 ( ± i ) = 1 48 π 2 ± i G {\displaystyle \operatorname {Li} _{2}(\pm {\rm {i}})=-{\textstyle {\frac {1}{48}}}\pi ^{2}\pm {\rm {i}}G}

där G är Catalans konstant

Identiteter för speciella värden

Li 2 ( 1 3 ) 1 6 Li 2 ( 1 9 ) = π 2 18 ln 2 3 6 {\displaystyle \operatorname {Li} _{2}\left({\frac {1}{3}}\right)-{\frac {1}{6}}\operatorname {Li} _{2}\left({\frac {1}{9}}\right)={\frac {{\pi }^{2}}{18}}-{\frac {\ln ^{2}3}{6}}}
Li 2 ( 1 2 ) + 1 6 Li 2 ( 1 9 ) = π 2 18 ln 2 ln 3 ln 2 2 2 ln 2 3 3 {\displaystyle \operatorname {Li} _{2}\left(-{\frac {1}{2}}\right)+{\frac {1}{6}}\operatorname {Li} _{2}\left({\frac {1}{9}}\right)=-{\frac {{\pi }^{2}}{18}}-\ln 2\cdot \ln 3-{\frac {\ln ^{2}2}{2}}-{\frac {\ln ^{2}3}{3}}}
Li 2 ( 1 4 ) + 1 3 Li 2 ( 1 9 ) = π 2 18 + 2 ln 2 ln 3 2 ln 2 2 2 3 ln 2 3 {\displaystyle \operatorname {Li} _{2}\left({\frac {1}{4}}\right)+{\frac {1}{3}}\operatorname {Li} _{2}\left({\frac {1}{9}}\right)={\frac {{\pi }^{2}}{18}}+2\ln 2\ln 3-2\ln ^{2}2-{\frac {2}{3}}\ln ^{2}3}
Li 2 ( 1 3 ) 1 3 Li 2 ( 1 9 ) = π 2 18 + 1 6 ln 2 3 {\displaystyle \operatorname {Li} _{2}\left(-{\frac {1}{3}}\right)-{\frac {1}{3}}\operatorname {Li} _{2}\left({\frac {1}{9}}\right)=-{\frac {{\pi }^{2}}{18}}+{\frac {1}{6}}\ln ^{2}3}
Li 2 ( 1 8 ) + Li 2 ( 1 9 ) = 1 2 ln 2 9 8 {\displaystyle \operatorname {Li} _{2}\left(-{\frac {1}{8}}\right)+\operatorname {Li} _{2}\left({\frac {1}{9}}\right)=-{\frac {1}{2}}\ln ^{2}{\frac {9}{8}}}
36 Li 2 ( 1 2 ) 36 Li 2 ( 1 4 ) 12 Li 2 ( 1 8 ) + 6 Li 2 ( 1 64 ) = π 2 {\displaystyle 36\operatorname {Li} _{2}\left({\frac {1}{2}}\right)-36\operatorname {Li} _{2}\left({\frac {1}{4}}\right)-12\operatorname {Li} _{2}\left({\frac {1}{8}}\right)+6\operatorname {Li} _{2}\left({\frac {1}{64}}\right)={\pi }^{2}}


Källor

Den här artikeln är helt eller delvis baserad på material från engelskspråkiga Wikipedia, Spence's function, 12 november 2013.
v  r
Speciella funktioner
Gamma- och relaterade funktioner
Gammafunktionen · Betafunktionen · Digammafunktionen · Trigammafunktionen · Polygammafunktionen · Ofullständiga gammafunktionen · Barnes G-funktion
Zeta- och L-funktioner
Riemanns zetafunktion · Dirichlets L-funktion · Dedekinds zetafunktion · Artins L-funktion · Hasse–Weils L-funktion · Motiviska L-funktionen
Besselfunktioner och relaterade funktioner
Besselfunktion · Bessel–Maitlands funktion · Struves funktion · Angers funktion
Elliptiska funktioner och thetafunktioner
Elliptiska gammafunktionen · q-gammafunktionen · Ramanujans thetafunktion · Weierstrass elliptiska funktion · Eisensteinserie · Jacobis thetafunktioner · Jacobis elliptiska funktioner · Elliptisk integral · Aritmetisk-geometriskt medelvärde · Falsk modulär form
Hypergeometriska funktioner
Hypergeometriska funktionen · Generaliserad hypergeometrisk funktion · Bilateral hypergeometrisk serie · Fox–Wrights funktion · Meijers G-funktion · Fox H-funktion · Kampé de Fériets funktion
Ortogonala polynom
Andra funktioner