Semiprimitive ring

Algebraic structure → Ring theory
Ring theory
Basic concepts
Rings
• Subrings
• Ideal
• Quotient ring
• Fractional ideal
Total ring of fractions
• Product of rings
• Free product of associative algebras
Tensor product of algebras

Ring homomorphisms

• Kernel
Inner automorphism
• Frobenius endomorphism

Algebraic structures

• Module
• Associative algebra
• Graded ring
• Involutive ring
• Category of rings
• Initial ring Z {\displaystyle \mathbb {Z} }
• Terminal ring 0 = Z / 1 Z {\displaystyle 0=\mathbb {Z} /1\mathbb {Z} }

Related structures

• Field
• Finite field
Non-associative ring
Lie ring
Jordan ring
Semiring
Semifield
Commutative rings
Integral domain
Integrally closed domain
GCD domain
Unique factorization domain
Principal ideal domain
Euclidean domain
• Field
Finite field
Composition ring
Polynomial ring
Formal power series ring

Algebraic number theory

Algebraic number field
Ring of integers
Algebraic independence
Transcendental number theory
Transcendence degree

p-adic number theory and decimals

Direct limit/Inverse limit
Zero ring Z / 1 Z {\displaystyle \mathbb {Z} /1\mathbb {Z} }
• Integers modulo pn Z / p n Z {\displaystyle \mathbb {Z} /p^{n}\mathbb {Z} }
• Prüfer p-ring Z ( p ) {\displaystyle \mathbb {Z} (p^{\infty })}
Base-p circle ring T {\displaystyle \mathbb {T} }
Base-p integers Z {\displaystyle \mathbb {Z} }
p-adic rationals Z [ 1 / p ] {\displaystyle \mathbb {Z} [1/p]}
Base-p real numbers R {\displaystyle \mathbb {R} }
p-adic integers Z p {\displaystyle \mathbb {Z} _{p}}
p-adic numbers Q p {\displaystyle \mathbb {Q} _{p}}
p-adic solenoid T p {\displaystyle \mathbb {T} _{p}}

Algebraic geometry

Affine variety
  • v
  • t
  • e

In algebra, a semiprimitive ring or Jacobson semisimple ring or J-semisimple ring is a ring whose Jacobson radical is zero. This is a type of ring more general than a semisimple ring, but where simple modules still provide enough information about the ring. Rings such as the ring of integers are semiprimitive, and an artinian semiprimitive ring is just a semisimple ring. Semiprimitive rings can be understood as subdirect products of primitive rings, which are described by the Jacobson density theorem.

Definition

A ring is called semiprimitive or Jacobson semisimple if its Jacobson radical is the zero ideal.

A ring is semiprimitive if and only if it has a faithful semisimple left module. The semiprimitive property is left-right symmetric, and so a ring is semiprimitive if and only if it has a faithful semisimple right module.

A ring is semiprimitive if and only if it is a subdirect product of left primitive rings.

A commutative ring is semiprimitive if and only if it is a subdirect product of fields, (Lam 1995, p. 137).

A left artinian ring is semiprimitive if and only if it is semisimple, (Lam 2001, p. 54). Such rings are sometimes called semisimple Artinian, (Kelarev 2002, p. 13).

Examples

  • The ring of integers is semiprimitive, but not semisimple.
  • Every primitive ring is semiprimitive.
  • The product of two fields is semiprimitive but not primitive.
  • Every von Neumann regular ring is semiprimitive.

Jacobson himself has defined a ring to be "semisimple" if and only if it is a subdirect product of simple rings, (Jacobson 1989, p. 203). However, this is a stricter notion, since the endomorphism ring of a countably infinite dimensional vector space is semiprimitive, but not a subdirect product of simple rings, (Lam 1995, p. 42).

References

  • Jacobson, Nathan (1989), Basic algebra II (2nd ed.), W. H. Freeman, ISBN 978-0-7167-1933-5
  • Lam, Tsit-Yuen (1995), Exercises in classical ring theory, Problem Books in Mathematics, Berlin, New York: Springer-Verlag, ISBN 978-0-387-94317-6, MR 1323431
  • Lam, Tsit-Yuen (2001), A First Course in Noncommutative Rings, Berlin, New York: Springer-Verlag, ISBN 978-0-387-95325-0
  • Kelarev, Andrei V. (2002), Ring Constructions and Applications, World Scientific, ISBN 978-981-02-4745-4


Stub icon

This abstract algebra-related article is a stub. You can help Wikipedia by expanding it.

  • v
  • t
  • e