*-algebra

Mathematical structure in abstract algebra
Algebraic structures
Group-like
  • Group
  • Semigroup / Monoid
  • Rack and quandle
  • Quasigroup and loop
  • Abelian group
  • Magma
  • Lie group
Group theory
Ring-like
  • Ring
  • Rng
  • Semiring
  • Near-ring
  • Commutative ring
  • Domain
  • Integral domain
  • Field
  • Division ring
  • Lie ring
Ring theory
Lattice-like
  • Lattice
  • Semilattice
  • Complemented lattice
  • Total order
  • Heyting algebra
  • Boolean algebra
  • Map of lattices
  • Lattice theory
  • v
  • t
  • e

In mathematics, and more specifically in abstract algebra, a *-algebra (or involutive algebra; read as "star-algebra") is a mathematical structure consisting of two involutive rings R and A, where R is commutative and A has the structure of an associative algebra over R. Involutive algebras generalize the idea of a number system equipped with conjugation, for example the complex numbers and complex conjugation, matrices over the complex numbers and conjugate transpose, and linear operators over a Hilbert space and Hermitian adjoints. However, it may happen that an algebra admits no involution.[a]

Look up * or star in Wiktionary, the free dictionary.

Definitions

*-ring

Algebraic structure → Ring theory
Ring theory
Basic concepts
Rings
Subrings
• Ideal
Quotient ring
Fractional ideal
Total ring of fractions
Product of rings
• Free product of associative algebras
Tensor product of algebras

Ring homomorphisms

• Kernel
Inner automorphism
Frobenius endomorphism

Algebraic structures

• Module
Associative algebra
Graded ring
Involutive ring
Category of rings
Initial ring Z {\displaystyle \mathbb {Z} }
Terminal ring 0 = Z / 1 Z {\displaystyle 0=\mathbb {Z} /1\mathbb {Z} }

Related structures

• Field
Finite field
Non-associative ring
Lie ring
Jordan ring
Semiring
Semifield
Commutative rings
Integral domain
Integrally closed domain
GCD domain
Unique factorization domain
Principal ideal domain
Euclidean domain
• Field
Finite field
Composition ring
Polynomial ring
Formal power series ring

Algebraic number theory

Algebraic number field
Ring of integers
Algebraic independence
Transcendental number theory
Transcendence degree

p-adic number theory and decimals

Direct limit/Inverse limit
Zero ring Z / 1 Z {\displaystyle \mathbb {Z} /1\mathbb {Z} }
• Integers modulo pn Z / p n Z {\displaystyle \mathbb {Z} /p^{n}\mathbb {Z} }
• Prüfer p-ring Z ( p ) {\displaystyle \mathbb {Z} (p^{\infty })}
Base-p circle ring T {\displaystyle \mathbb {T} }
Base-p integers Z {\displaystyle \mathbb {Z} }
p-adic rationals Z [ 1 / p ] {\displaystyle \mathbb {Z} [1/p]}
Base-p real numbers R {\displaystyle \mathbb {R} }
p-adic integers Z p {\displaystyle \mathbb {Z} _{p}}
p-adic numbers Q p {\displaystyle \mathbb {Q} _{p}}
p-adic solenoid T p {\displaystyle \mathbb {T} _{p}}

Algebraic geometry

Affine variety
  • v
  • t
  • e

In mathematics, a *-ring is a ring with a map * : AA that is an antiautomorphism and an involution.

More precisely, * is required to satisfy the following properties:[1]

  • (x + y)* = x* + y*
  • (x y)* = y* x*
  • 1* = 1
  • (x*)* = x

for all x, y in A.

This is also called an involutive ring, involutory ring, and ring with involution. The third axiom is implied by the second and fourth axioms, making it redundant.

Elements such that x* = x are called self-adjoint.[2]

Archetypical examples of a *-ring are fields of complex numbers and algebraic numbers with complex conjugation as the involution. One can define a sesquilinear form over any *-ring.

Also, one can define *-versions of algebraic objects, such as ideal and subring, with the requirement to be *-invariant: xIx* ∈ I and so on.


*-rings are unrelated to star semirings in the theory of computation.

*-algebra

A *-algebra A is a *-ring,[b] with involution * that is an associative algebra over a commutative *-ring R with involution , such that (r x)* = rx*  ∀rR, xA.[3]

The base *-ring R is often the complex numbers (with acting as complex conjugation).

It follows from the axioms that * on A is conjugate-linear in R, meaning

(λ x + μy)* = λx* + μy*

for λ, μR, x, yA.

A *-homomorphism f : AB is an algebra homomorphism that is compatible with the involutions of A and B, i.e.,

  • f(a*) = f(a)* for all a in A.[2]

Philosophy of the *-operation

The *-operation on a *-ring is analogous to complex conjugation on the complex numbers. The *-operation on a *-algebra is analogous to taking adjoints in complex matrix algebras.

Notation

The * involution is a unary operation written with a postfixed star glyph centered above or near the mean line:

xx*, or
xx (TeX: x^*),

but not as "x"; see the asterisk article for details.

Examples

Involutive Hopf algebras are important examples of *-algebras (with the additional structure of a compatible comultiplication); the most familiar example being:

Non-Example

Not every algebra admits an involution:

Regard the 2×2 matrices over the complex numbers. Consider the following subalgebra:

A := { ( a b 0 0 ) : a , b C } {\displaystyle {\mathcal {A}}:=\left\{{\begin{pmatrix}a&b\\0&0\end{pmatrix}}:a,b\in \mathbb {C} \right\}}

Any nontrivial antiautomorphism necessarily has the form:[4]

φ z [ ( 1 0 0 0 ) ] = ( 1 z 0 0 ) φ z [ ( 0 1 0 0 ) ] = ( 0 0 0 0 ) {\displaystyle \varphi _{z}\left[{\begin{pmatrix}1&0\\0&0\end{pmatrix}}\right]={\begin{pmatrix}1&z\\0&0\end{pmatrix}}\quad \varphi _{z}\left[{\begin{pmatrix}0&1\\0&0\end{pmatrix}}\right]={\begin{pmatrix}0&0\\0&0\end{pmatrix}}}
for any complex number z C {\displaystyle z\in \mathbb {C} } .

It follows that any nontrivial antiautomorphism fails to be involutive:

φ z 2 [ ( 0 1 0 0 ) ] = ( 0 0 0 0 ) ( 0 1 0 0 ) {\displaystyle \varphi _{z}^{2}\left[{\begin{pmatrix}0&1\\0&0\end{pmatrix}}\right]={\begin{pmatrix}0&0\\0&0\end{pmatrix}}\neq {\begin{pmatrix}0&1\\0&0\end{pmatrix}}}

Concluding that the subalgebra admits no involution.

Additional structures

Many properties of the transpose hold for general *-algebras:

  • The Hermitian elements form a Jordan algebra;
  • The skew Hermitian elements form a Lie algebra;
  • If 2 is invertible in the *-ring, then the operators 1/2(1 + *) and 1/2(1 − *) are orthogonal idempotents,[2] called symmetrizing and anti-symmetrizing, so the algebra decomposes as a direct sum of modules (vector spaces if the *-ring is a field) of symmetric and anti-symmetric (Hermitian and skew Hermitian) elements. These spaces do not, generally, form associative algebras, because the idempotents are operators, not elements of the algebra.

Skew structures

Given a *-ring, there is also the map −* : x ↦ −x*. It does not define a *-ring structure (unless the characteristic is 2, in which case −* is identical to the original *), as 1 ↦ −1, neither is it antimultiplicative, but it satisfies the other axioms (linear, involution) and hence is quite similar to *-algebra where xx*.

Elements fixed by this map (i.e., such that a = −a*) are called skew Hermitian.

For the complex numbers with complex conjugation, the real numbers are the Hermitian elements, and the imaginary numbers are the skew Hermitian.

See also

Notes

  1. ^ In this context, involution is taken to mean an involutory antiautomorphism, also known as an anti-involution.
  2. ^ Most definitions do not require a *-algebra to have the unity, i.e. a *-algebra is allowed to be a *-rng only.

References

  1. ^ Weisstein, Eric W. (2015). "C-Star Algebra". Wolfram MathWorld.
  2. ^ a b c Baez, John (2015). "Octonions". Department of Mathematics. University of California, Riverside. Archived from the original on 26 March 2015. Retrieved 27 January 2015.
  3. ^ star-algebra at the nLab
  4. ^ Winker, S. K.; Wos, L.; Lusk, E. L. (1981). "Semigroups, Antiautomorphisms, and Involutions: A Computer Solution to an Open Problem, I". Mathematics of Computation. 37 (156): 533–545. doi:10.2307/2007445. ISSN 0025-5718.
  • v
  • t
  • e
Spectral theory and *-algebras
Basic concepts
Main results
Special Elements/Operators
Spectrum
Decomposition
Spectral Theorem
Special algebras
Finite-Dimensional
Generalizations
Miscellaneous
Examples
Applications