Nitryl fluoride

Nitryl fluoride
Nitryl fluoride
Nitryl fluoride
Nitryl fluoride
Nitryl fluoride
Identifiers
CAS Number
  • 10022-50-1 checkY
3D model (JSmol)
  • Interactive image
ChemSpider
  • 59588 ☒N
ECHA InfoCard 100.030.007 Edit this at Wikidata
EC Number
  • 233-021-0
PubChem CID
  • 66203
UNII
  • DAT2I9R64A ☒N
CompTox Dashboard (EPA)
  • DTXSID00143027 Edit this at Wikidata
InChI
  • InChI=1S/FNO2/c1-2(3)4 ☒N
    Key: JVJQPDTXIALXOG-UHFFFAOYSA-N ☒N
  • InChI=1/FNO2/c1-2(3)4
    Key: JVJQPDTXIALXOG-UHFFFAOYAU
  • [N+](=O)([O-])F
Properties
Chemical formula
FNO2
Molar mass 65.003 g·mol−1
Melting point −166 °C (−267 °F; 107 K)
Boiling point −72 °C (−98 °F; 201 K)
Related compounds
Other anions
nitryl chloride, nitryl bromide
Other cations
nitrosyl fluoride, sulfuryl fluoride
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)
Infobox references
Chemical compound

Nitryl fluoride, NO2F, is a colourless gas and strong oxidizing agent, which is used as a fluorinating agent[1] and has been proposed as an oxidiser in rocket propellants (though never flown).

It is a molecular species, not ionic, consistent with its low boiling point. The structure features planar nitrogen with a short N-F bond length of 135 pm.[2]

Preparation

Henri Moissan and Paul Lebeau recorded the preparation of nitryl fluoride in 1905 by the fluorination of nitrogen dioxide. This reaction is highly exothermic, which leads to contaminated products. The simplest method avoids fluorine gas but uses cobalt(III) fluoride:[3]

NO2 + CoF3 → NO2F + CoF2

The CoF2 can be regenerated to CoF3. Other methods have been described.[4]

Thermodynamic properties

The thermodynamic properties of this gas were determined by IR and Raman spectroscopy[5] The standard heat of formation of FNO2 is -19 ± 2 kcal/mol.3

  • The equilibrium of the unimolecular decomposition of FNO2 lies on the side of the reactants by at least six orders of magnitude at 500 kelvin, and two orders of magnitude at 1000 kelvin.[5]
  • The homogeneous thermal decomposition cannot be studied at temperatures below 1200 kelvin.[5]
  • The equilibrium shifts towards the reactants with increasing temperature.[5]
  • The dissociation energy of 46.0 kcal of the N-F bond in nitryl fluoride is about 18 kcal less than the normal N-F single bond energy. This can be attributed to the “reorganization energy” of the NO2 radical; that is, the NO2 radical in FNO2 is less stable than the free NO2 molecule. Qualitatively speaking, the odd electron “used up” in the N-F bond forms a resonating three-electron bond in free NO2, thus stabilizing the molecule with a gain of 18 kcal.[5]

Reactions

Nitryl fluoride can be used to prepare organic nitro compounds and nitrate esters.

See also

References

  1. ^ Merck Index, 13th edition (2001), p.1193
  2. ^ F. A. Cotton and G.Wilkinson, Advanced Inorganic Chemistry, 5th edition (1988), Wiley, p.333.
  3. ^ Davis, Ralph A.; Rausch, Douglas A. (1963). "Preparation of Nitryl Fluoride". Inorganic Chemistry. 2 (6): 1300–1301. doi:10.1021/ic50010a048.
  4. ^ Faloon, Albert V.; Kenna, William B. (1951). "The Preparation of Nitrosyl Fluoride and Nitryl Fluoride1". Journal of the American Chemical Society. 73 (6): 2937–2938. doi:10.1021/ja01150a505. hdl:2027/mdp.39015095101013. ISSN 0002-7863.
  5. ^ a b c d e Tschuikow-Roux, E. (1962). "Thermodynamic Properties of Nitryl Fluoride". Journal of Physical Chemistry. 66 (9): 1636–1639. doi:10.1021/j100815a017.

External links

  • WebBook page for NO2F
  • National Pollutant Inventory - Ionic Fluoride and related compounds fact sheet
  • v
  • t
  • e
HF He
LiF BeF2 BF
BF3
B2F4
CF4
CxFy
NF3
N2F4
OF
OF2
O2F2
O2F
F Ne
NaF MgF2 AlF
AlF3
SiF4 P2F4
PF3
PF5
S2F2
SF2
S2F4
SF4
S2F10
SF6
ClF
ClF3
ClF5
HArF
ArF2
KF CaF2 ScF3 TiF3
TiF4
VF2
VF3
VF4
VF5
CrF2
CrF3
CrF4
CrF5
CrF6
MnF2
MnF3
MnF4
FeF2
FeF3
CoF2
CoF3
NiF2
NiF3
CuF
CuF2
ZnF2 GaF3 GeF4 AsF3
AsF5
SeF4
SeF6
BrF
BrF3
BrF5
KrF2
KrF4
KrF6
RbF SrF2 YF3 ZrF4 NbF4
NbF5
MoF4
MoF5
MoF6
TcF6 RuF3
RuF4
RuF5
RuF6
RhF3
RhF5
RhF6
PdF2
Pd[PdF6]
PdF4
PdF6
AgF
AgF2
AgF3
Ag2F
CdF2 InF3 SnF2
SnF4
SbF3
SbF5
TeF4
TeF6
IF
IF3
IF5
IF7
XeF2
XeF4
XeF6
XeF8
CsF BaF2 * LuF3 HfF4 TaF5 WF4
WF6
ReF6
ReF7
OsF4
OsF5
OsF6
OsF
7

OsF8
IrF3
IrF5
IrF6
PtF2
Pt[PtF6]
PtF4
PtF5
PtF6
AuF
AuF3
Au2F10
AuF5·F2
HgF2
Hg2F2
HgF4
TlF
TlF3
PbF2
PbF4
BiF3
BiF5
PoF4
PoF6
At RnF2
RnF6
Fr RaF2 ** Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
* LaF3 CeF3
CeF4
PrF3
PrF4
NdF3 PmF3 SmF2
SmF3
EuF2
EuF3
GdF3 TbF3
TbF4
DyF3 HoF3 ErF3 TmF2
TmF3
YbF2
YbF3
** AcF3 ThF4 PaF4
PaF5
UF3
UF4
UF5
UF6
NpF3
NpF4
NpF5
NpF6
PuF3
PuF4
PuF5
PuF6
AmF3
AmF4
AmF6
CmF3 Bk Cf Es Fm Md No
PF6, AsF6, SbF6 compounds
  • AgPF6
  • KAsF6
  • LiAsF6
  • NaAsF6
  • HPF6
  • HSbF6
  • NH4PF6
  • KPF6
  • KSbF6
  • LiPF6
  • NaPF6
  • NaSbF6
  • TlPF6
AlF6 compounds
  • Cs2AlF5
  • K3AlF6
  • Na3AlF6
chlorides, bromides, iodides
and pseudohalogenidesSiF62-, GeF62- compounds
  • BaSiF6
  • BaGeF6
  • (NH4)2SiF6
  • Na2[SiF6]
  • K2[SiF6]
Oxyfluorides
  • BrOF3
  • BrO2F
  • BrO3F
  • LaOF
  • ThOF2
  • VOF
    3
  • TcO
    3
    F
  • WOF
    4
  • YOF
  • ClOF3
  • ClO2F3
Organofluorides
  • CBrF3
  • CBr2F2
  • CBr3F
  • CClF3
  • CCl2F2
  • CCl3F
  • CF2O
  • CF3I
  • CHF3
  • CH2F2
  • CH3F
  • C2Cl3F3
  • C2H3F
  • C6H5F
  • C7H5F3
  • C15F33N
  • C3H5F
  • C6H11F
with transition metal,
lanthanide, actinide, ammonium
  • VOF3
  • CrOF4
  • CrF2O2
  • NH4F
  • (NH4)2ZrF6
  • CsXeF7
  • Li2TiF6
  • Li2ZrF6
  • K2TiF6
  • Rb2TiF6
  • Na2TiF6
  • Na2ZrF6
  • K2NbF7
  • K2TaF7
  • K2ZrF6
  • UO2F2
nitric acids
bifluorides
  • KHF2
  • NaHF2
  • NH4HF2
thionyl, phosphoryl,
and iodosyl
  • F2OS
  • F3OP
  • PSF3
  • IOF3
  • IO3F
  • IOF5
  • IO2F
  • IO2F3