List of Johnson solids

In geometry, polyhedra are three-dimensional objects where points are connected by lines to form polygons. The points, lines, and polygons of a polyhedron are referred to as its vertices, edges, and faces respectively.[1] A polyhedron is considered to be convex if:[2]

  • The shortest path between any two of its vertices lies either within its interior or on its boundary
  • None of its faces are coplanar—they do not share the same plane, and do not "lie flat"
  • None of its edges are colinear—they are not segments of the same line.

A polyhedron is said to be regular if each of its faces are both equilateral and equiangular.[3] Regular polyhedra with the additional property of vertex-transitivity are called uniform polyhedra.[4] A Johnson solid (or Johnson–Zalgaller solid) is any convex polyhedron with only regular polygons as its faces. Some authors exclude uniform polyhedra—which include the Platonic solids and Archimedean solids, as well as prisms and antiprisms—from their definition.[5]

The Johnson solids are named for the mathematician Norman Johnson (1930–2017), who published a list of 92 convex polyhedra conforming with the above definition in 1966. Moreover, Johnson conjectured that the list was complete, and there could not be any other examples. Johnson's conjecture was later proven by the Russian-Israeli mathematician Victor Zalgaller (1920–2020) in 1969.[6] The first six Johnson solids are the square pyramid, pentagonal pyramid, triangular cupola, square cupola, pentagonal cupola, and pentagonal rotunda. These solids may be applied to construct another polyhedron that has the same properties, a process known as augmentation; attaching prism or antiprism to those is known as elongation or gyroelongation, respectively. Some others may be constructed by diminishment, the removal of those from the component of polyhedra, or by snubification, a construction by cutting loose the edges, lifting the faces and rotate in certain angle, after which adding the equilateral triangles between them.[7]

Every polyhedra has own characteristics, including symmetry and measurement. An object is said to be symmetrical if there is such transformation preserving the immunity to change. All of those transformations may be composed in a concept of group, alongside the number of elements, known as order. In two-dimensional space, these transformations include rotating around the center of a polygon and reflecting an object around the perpendicular bisector of a polygon. A polygon that is rotated symmetrically in 360 n {\textstyle {\frac {360^{\circ }}{n}}} is denoted by C n {\displaystyle C_{n}} , a cyclic group of order n {\displaystyle n} ; combining with the reflection symmetry results in the symmetry of dihedral group D n {\displaystyle D_{n}} of order 2 n {\displaystyle 2n} .[8] In three-dimensional symmetry point groups, the transformation of polyhedra's symmetry includes the rotation around the line passing through the base center, known as axis of symmetry, and reflection relative to perpendicular planes passing through the bisector of a base; this is known as the pyramidal symmetry C n v {\displaystyle C_{nv}} of order 2 n {\displaystyle 2n} . Relatedly, polyhedra that preserve their symmetry by reflecting it across a horizontal plane are known as prismatic symmetry D n h {\displaystyle D_{nh}} of order 4 n {\displaystyle 4n} . The antiprismatic symmetry D n d {\displaystyle D_{nd}} of order 4 n {\displaystyle 4n} preserves the symmetry by rotating its half bottom and reflection across the horizontal plane.[9] The symmetry group C n h {\displaystyle C_{nh}} of order 2 n {\displaystyle 2n} preserves the symmetry by rotation around the axis of symmetry and reflection on horizontal plane; one case that preserves the symmetry by one full rotation and one reflection horizontal plane is C 1 h {\displaystyle C_{1h}} of order 2, or simply denoted as C s {\displaystyle C_{s}} .[10] The mensuration of polyhedra includes the surface area and volume. An area is a two-dimensional measurement calculated by the product of length and width, and the surface area is the overall area of all faces of polyhedra that is measured by summing all of them.[11] A volume is a measurement of the region in three-dimensional space.[12]

The following table contains the 92 Johnson solids of the edge length a {\displaystyle a} . Each of the columns includes the enumeration of Johnson solid, denoted as J n {\displaystyle J_{n}} ,[13] the number of vertices, edges, and faces, symmetry, surface area A {\displaystyle A} and volume V {\displaystyle V} .

Table of all 92 Johnson solids
J n {\displaystyle J_{n}} Solid name Image Vertices Edges Faces Symmetry group and its order[14] Surface area and volume[15]
1 Equilateral
square
pyramid
5 8 5 C 4 v {\displaystyle C_{4v}} of order 8 A = ( 1 + 3 ) a 2 2.7321 a 2 V = 2 6 a 3 0.2357 a 3 {\displaystyle {\begin{aligned}A&=\left(1+{\sqrt {3}}\right)a^{2}\\&\approx 2.7321a^{2}\\V&={\frac {\sqrt {2}}{6}}a^{3}\\&\approx 0.2357a^{3}\end{aligned}}}
2 Pentagonal
pyramid
6 10 6 C 5 v {\displaystyle C_{5v}} of order 10 A = a 2 2 5 2 ( 10 + 5 + 75 + 30 5 ) 3.8855 a 2 V = ( 5 + 5 24 ) a 3 0.3015 a 3 {\displaystyle {\begin{aligned}A&={\frac {a^{2}}{2}}{\sqrt {{\frac {5}{2}}\left(10+{\sqrt {5}}+{\sqrt {75+30{\sqrt {5}}}}\right)}}\\&\approx 3.8855a^{2}\\V&=\left({\frac {5+{\sqrt {5}}}{24}}\right)a^{3}\\&\approx 0.3015a^{3}\end{aligned}}}
3 Triangular
cupola
9 15 8 C 3 v {\displaystyle C_{3v}} of order 6 A = ( 3 + 5 3 2 ) a 2 7.3301 a 2 V = ( 5 3 2 ) a 3 1.1785 a 3 {\displaystyle {\begin{aligned}A&=\left(3+{\frac {5{\sqrt {3}}}{2}}\right)a^{2}\\&\approx 7.3301a^{2}\\V&=\left({\frac {5}{3{\sqrt {2}}}}\right)a^{3}\\&\approx 1.1785a^{3}\end{aligned}}}
4 Square
cupola
12 20 10 C 4 v {\displaystyle C_{4v}} of order 8 A = ( 7 + 2 2 + 3 ) a 2 11.5605 a 2 V = ( 1 + 2 2 3 ) a 3 1.9428 a 3 {\displaystyle {\begin{aligned}A&=\left(7+2{\sqrt {2}}+{\sqrt {3}}\right)a^{2}\\&\approx 11.5605a^{2}\\V&=\left(1+{\frac {2{\sqrt {2}}}{3}}\right)a^{3}\\&\approx 1.9428a^{3}\end{aligned}}}
5 Pentagonal
cupola
15 25 12 C 5 v {\displaystyle C_{5v}} of order 10 A = ( 1 4 ( 20 + 5 3 + 5 ( 145 + 62 5 ) ) ) a 2 16.5798 a 2 V = ( 1 6 ( 5 + 4 5 ) ) a 3 2.3241 a 3 {\displaystyle {\begin{aligned}A&=\left({\frac {1}{4}}\left(20+5{\sqrt {3}}+{\sqrt {5\left(145+62{\sqrt {5}}\right)}}\right)\right)a^{2}\\&\approx 16.5798a^{2}\\V&=\left({\frac {1}{6}}\left(5+4{\sqrt {5}}\right)\right)a^{3}\\&\approx 2.3241a^{3}\end{aligned}}}
6 Pentagonal
rotunda
20 35 17 C 5 v {\displaystyle C_{5v}} of order 10 A = ( 1 2 ( 5 3 + 10 ( 65 + 29 5 ) ) ) a 2 22.3472 a 2 V = ( 1 12 ( 45 + 17 5 ) ) a 3 6.9178 a 3 {\displaystyle {\begin{aligned}A&=\left({\frac {1}{2}}\left(5{\sqrt {3}}+{\sqrt {10\left(65+29{\sqrt {5}}\right)}}\right)\right)a^{2}\\&\approx 22.3472a^{2}\\V&=\left({\frac {1}{12}}\left(45+17{\sqrt {5}}\right)\right)a^{3}\\&\approx 6.9178a^{3}\end{aligned}}}
7 Elongated
triangular
pyramid
7 12 7 C 3 v {\displaystyle C_{3v}} of order 6 A = ( 3 + 3 ) a 2 4.7321 a 2 V = ( 1 12 ( 2 + 3 3 ) ) a 3 0.5509 a 3 {\displaystyle {\begin{aligned}A&=\left(3+{\sqrt {3}}\right)a^{2}\\&\approx 4.7321a^{2}\\V&=\left({\frac {1}{12}}\left({\sqrt {2}}+3{\sqrt {3}}\right)\right)a^{3}\\&\approx 0.5509a^{3}\end{aligned}}}
8 Elongated
square
pyramid
9 16 9 C 4 v {\displaystyle C_{4v}} of order 8 A = ( 5 + 3 ) a 2 6.7321 a 2 V = ( 1 + 2 6 ) a 3 1.2357 a 3 {\displaystyle {\begin{aligned}A&=\left(5+{\sqrt {3}}\right)a^{2}\\&\approx 6.7321a^{2}\\V&=\left(1+{\frac {\sqrt {2}}{6}}\right)a^{3}\\&\approx 1.2357a^{3}\end{aligned}}}
9 Elongated
pentagonal
pyramid
11 20 11 C 5 v {\displaystyle C_{5v}} of order 10 A = 20 + 5 3 + 25 + 10 5 4 a 2 8.8855 a 2 V = ( 5 + 5 + 6 25 + 10 5 24 ) a 3 2.022 a 3 {\displaystyle {\begin{aligned}A&={\frac {20+5{\sqrt {3}}+{\sqrt {25+10{\sqrt {5}}}}}{4}}a^{2}\\&\approx 8.8855a^{2}\\V&=\left({\frac {5+{\sqrt {5}}+6{\sqrt {25+10{\sqrt {5}}}}}{24}}\right)a^{3}\\&\approx 2.022a^{3}\end{aligned}}}
10 Gyroelongated
square
pyramid
9 20 13 C 4 v {\displaystyle C_{4v}} of order 8 A = ( 1 + 3 3 ) a 2 6.1962 a 2 V = 1 6 ( 2 + 2 4 + 3 2 ) a 3 1.1927 a 3 {\displaystyle {\begin{aligned}A&=(1+3{\sqrt {3}})a^{2}\\&\approx 6.1962a^{2}\\V&={\frac {1}{6}}\left({\sqrt {2}}+2{\sqrt {4+3{\sqrt {2}}}}\right)a^{3}\\&\approx 1.1927a^{3}\end{aligned}}}
11 Gyroelongated
pentagonal
pyramid
11 25 16 C 5 v {\displaystyle C_{5v}} of order 10 A = 1 4 ( 15 3 + 5 ( 5 + 2 5 ) ) a 2 8.2157 a 2 V = 1 24 ( 25 + 9 5 ) a 3 1.8802 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{4}}\left(15{\sqrt {3}}+{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 8.2157a^{2}\\V&={\frac {1}{24}}\left(25+9{\sqrt {5}}\right)a^{3}\\&\approx 1.8802a^{3}\end{aligned}}}
12 Triangular
bipyramid
5 9 6 D 3 h {\displaystyle D_{3h}} of order 12 A = 3 3 2 a 2 2.5981 a 2 V = 2 6 a 3 0.2358 a 3 {\displaystyle {\begin{aligned}A&={\frac {3{\sqrt {3}}}{2}}a^{2}\\&\approx 2.5981a^{2}\\V&={\frac {\sqrt {2}}{6}}a^{3}\\&\approx 0.2358a^{3}\end{aligned}}}
13 Pentagonal
bipyramid
7 15 10 D 5 h {\displaystyle D_{5h}} of order 20 A = 5 3 2 a 2 4.3301 a 2 V = 1 12 ( 5 + 5 ) a 3 0.603 a 3 {\displaystyle {\begin{aligned}A&={\frac {5{\sqrt {3}}}{2}}a^{2}\\&\approx 4.3301a^{2}\\V&={\frac {1}{12}}\left(5+{\sqrt {5}}\right)a^{3}\\&\approx 0.603a^{3}\end{aligned}}}
14 Elongated
triangular
bipyramid
8 15 9 D 3 h {\displaystyle D_{3h}} of order 12 A = 3 2 ( 2 + 3 ) a 2 5.5981 a 2 V = 1 12 ( 2 2 + 3 3 ) a 3 0.6687 a 3 {\displaystyle {\begin{aligned}A&={\frac {3}{2}}\left(2+{\sqrt {3}}\right)a^{2}\\&\approx 5.5981a^{2}\\V&={\frac {1}{12}}\left(2{\sqrt {2}}+3{\sqrt {3}}\right)a^{3}\\&\approx 0.6687a^{3}\end{aligned}}}
15 Elongated
square
bipyramid
10 20 12 D 4 h {\displaystyle D_{4h}} of order 16 A = 2 ( 2 + 3 ) a 2 7.4641 a 2 V = 1 3 ( 3 + 2 ) a 3 1.4714 a 3 {\displaystyle {\begin{aligned}A&=2\left(2+{\sqrt {3}}\right)a^{2}\\&\approx 7.4641a^{2}\\V&={\frac {1}{3}}\left(3+{\sqrt {2}}\right)a^{3}\\&\approx 1.4714a^{3}\end{aligned}}}
16 Elongated
pentagonal
bipyramid
12 25 15 D 5 h {\displaystyle D_{5h}} of order 20 A = 5 2 ( 2 + 3 ) a 2 9.3301 a 2 V = 1 12 ( 5 + 5 + 3 5 ( 5 + 2 5 ) ) a 3 2.3235 a 3 {\displaystyle {\begin{aligned}A&={\frac {5}{2}}\left(2+{\sqrt {3}}\right)a^{2}\\&\approx 9.3301a^{2}\\V&={\frac {1}{12}}\left(5+{\sqrt {5}}+3{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{3}\\&\approx 2.3235a^{3}\end{aligned}}}
17 Gyroelongated
square
bipyramid
10 24 16 D 4 d {\displaystyle D_{4d}} of order 16 A = 4 3 a 2 6.9282 a 2 V = 1 12 ( 5 + 5 + 3 5 ( 5 + 2 5 ) ) a 3 2.3235 a 3 {\displaystyle {\begin{aligned}A&=4{\sqrt {3}}a^{2}\\&\approx 6.9282a^{2}\\V&={\frac {1}{12}}\left(5+{\sqrt {5}}+3{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{3}\\&\approx 2.3235a^{3}\end{aligned}}}
18 Elongated
triangular
cupola
15 27 14 C 3 v {\displaystyle C_{3v}} of order 6 A = 1 2 ( 18 + 5 3 ) a 2 13.3301 a 2 V = 1 3 ( 2 + 4 + 3 2 ) a 3 1.4284 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{2}}\left(18+5{\sqrt {3}}\right)a^{2}\\&\approx 13.3301a^{2}\\V&={\frac {1}{3}}\left({\sqrt {2}}+{\sqrt {4+3{\sqrt {2}}}}\right)a^{3}\\&\approx 1.4284a^{3}\end{aligned}}}
19 Elongated
square
cupola
20 36 18 C 4 v {\displaystyle C_{4v}} of order 8 A = ( 15 + 2 2 + 3 ) a 2 19.5605 a 2 V = ( 3 + 8 2 3 ) a 3 6.7712 a 3 {\displaystyle {\begin{aligned}A&=(15+2{\sqrt {2}}+{\sqrt {3}})a^{2}\\&\approx 19.5605a^{2}\\V&=\left(3+{\frac {8{\sqrt {2}}}{3}}\right)a^{3}\\&\approx 6.7712a^{3}\end{aligned}}}
20 Elongated
pentagonal
cupola
25 45 22 C 5 v {\displaystyle C_{5v}} of order 10 A = 1 4 ( 60 + 5 3 + 10 5 + 2 5 + 5 ( 5 + 2 5 ) ) a 2 26.5798 a 2 V = 1 6 ( 5 + 4 5 + 15 5 + 2 5 ) a 3 10.0183 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{4}}\left(60+5{\sqrt {3}}+10{\sqrt {5+2{\sqrt {5}}}}+{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 26.5798a^{2}\\V&={\frac {1}{6}}\left(5+4{\sqrt {5}}+15{\sqrt {5+2{\sqrt {5}}}}\right)a^{3}\\&\approx 10.0183a^{3}\end{aligned}}}
21 Elongated
pentagonal
rotunda
30 55 27 C 5 v {\displaystyle C_{5v}} of order 10 A = 1 2 a 2 ( 20 + 5 3 + 5 5 + 2 5 + 3 5 ( 5 + 2 5 ) ) 32.3472 a 2 V = 1 12 a 3 ( 45 + 17 5 + 30 5 + 2 5 ) 14.612 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{2}}a^{2}\left(20+5{\sqrt {3}}+5{\sqrt {5+2{\sqrt {5}}}}+3{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)\\&\approx 32.3472a^{2}\\V&={\frac {1}{12}}a^{3}\left(45+17{\sqrt {5}}+30{\sqrt {5+2{\sqrt {5}}}}\right)\\&\approx 14.612a^{3}\end{aligned}}}
22 Gyroelongated
triangular
cupola
15 33 20 C 3 v {\displaystyle C_{3v}} of order 6 A = 1 2 ( 6 + 11 3 ) a 2 12.5263 a 2 V = 1 3 61 2 + 18 3 + 30 1 + 3 a 3 3.5161 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{2}}\left(6+11{\sqrt {3}}\right)a^{2}\\&\approx 12.5263a^{2}\\V&={\frac {1}{3}}{\sqrt {{\frac {61}{2}}+18{\sqrt {3}}+30{\sqrt {1+{\sqrt {3}}}}}}a^{3}\\&\approx 3.5161a^{3}\end{aligned}}}
23 Gyroelongated
square
cupola
20 44 26 C 4 v {\displaystyle C_{4v}} of order 8 A = ( 7 + 2 2 + 5 3 ) a 2 18.4887 a 2 V = ( 1 + 2 3 2 + 2 3 4 + 2 2 + 2 146 + 103 2 ) a 3 6.2108 a 3 {\displaystyle {\begin{aligned}A&=(7+2{\sqrt {2}}+5{\sqrt {3}})a^{2}\\&\approx 18.4887a^{2}\\V&=\left(1+{\frac {2}{3}}{\sqrt {2}}+{\frac {2}{3}}{\sqrt {4+2{\sqrt {2}}+2{\sqrt {146+103{\sqrt {2}}}}}}\right)a^{3}\\&\approx 6.2108a^{3}\end{aligned}}}
24 Gyroelongated
pentagonal
cupola
25 55 32 C 5 v {\displaystyle C_{5v}} of order 10 A = 1 4 ( 20 + 25 3 + 10 5 + 2 5 + 5 ( 5 + 2 5 ) ) a 2 25.2400 a 2 V = ( 5 6 + 2 3 5 + 5 6 2 650 + 290 5 2 5 2 ) a 3 9.0733 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{4}}\left(20+25{\sqrt {3}}+10{\sqrt {5+2{\sqrt {5}}}}+{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 25.2400a^{2}\\V&=\left({\frac {5}{6}}+{\frac {2}{3}}{\sqrt {5}}+{\frac {5}{6}}{\sqrt {2{\sqrt {650+290{\sqrt {5}}}}-2{\sqrt {5}}-2}}\right)a^{3}\\&\approx 9.0733a^{3}\end{aligned}}}
25 Gyroelongated
pentagonal
rotunda
30 65 37 C 5 v {\displaystyle C_{5v}} of order 10 A = 1 2 ( 15 3 + ( 5 + 3 5 ) 5 + 2 5 ) a 2 31.0075 a 2 V = ( 45 12 + 17 12 5 + 5 6 2 650 + 290 5 2 5 2 ) a 3 13.6671 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{2}}\left(15{\sqrt {3}}+\left(5+3{\sqrt {5}}\right){\sqrt {5+2{\sqrt {5}}}}\right)a^{2}\\&\approx 31.0075a^{2}\\V&=\left({\frac {45}{12}}+{\frac {17}{12}}{\sqrt {5}}+{\frac {5}{6}}{\sqrt {2{\sqrt {650+290{\sqrt {5}}}}-2{\sqrt {5}}-2}}\right)a^{3}\\&\approx 13.6671a^{3}\end{aligned}}}
26 Gyrobifastigium 8 14 8 D 2 d {\displaystyle D_{2d}} of order 8 A = ( 4 + 3 ) a 2 5.7321 a 2 V = ( 3 2 ) a 3 0.866 a 3 {\displaystyle {\begin{aligned}A&=\left(4+{\sqrt {3}}\right)a^{2}\\&\approx 5.7321a^{2}\\V&=\left({\frac {\sqrt {3}}{2}}\right)a^{3}\\&\approx 0.866a^{3}\end{aligned}}}
27 Triangular
orthobicupola
12 24 14 D 3 h {\displaystyle D_{3h}} of order 12 A = 2 ( 3 + 3 ) a 2 9.4641 a 2 V = 5 2 3 a 3 2.357 a 3 {\displaystyle {\begin{aligned}A&=2\left(3+{\sqrt {3}}\right)a^{2}\\&\approx 9.4641a^{2}\\V&={\frac {5{\sqrt {2}}}{3}}a^{3}\\&\approx 2.357a^{3}\end{aligned}}}
28 Square
orthobicupola
16 32 18 D 4 h {\displaystyle D_{4h}} of order 16 A = 2 ( 5 + 3 ) a 2 13.4641 a 2 V = ( 2 + 4 2 3 ) a 3 3.8856 a 3 {\displaystyle {\begin{aligned}A&=2(5+{\sqrt {3}})a^{2}\\&\approx 13.4641a^{2}\\V&=\left(2+{\frac {4{\sqrt {2}}}{3}}\right)a^{3}\\&\approx 3.8856a^{3}\end{aligned}}}
29 Square
gyrobicupola
16 32 18 D 4 d {\displaystyle D_{4d}} of order 16 A = 2 ( 5 + 3 ) a 2 13.4641 a 2 V = ( 2 + 4 2 3 ) a 3 3.8856 a 3 {\displaystyle {\begin{aligned}A&=2(5+{\sqrt {3}})a^{2}\\&\approx 13.4641a^{2}\\V&=\left(2+{\frac {4{\sqrt {2}}}{3}}\right)a^{3}\\&\approx 3.8856a^{3}\end{aligned}}}
30 Pentagonal
orthobicupola
20 40 22 D 5 h {\displaystyle D_{5h}} of order 20 A = ( 10 + 5 2 ( 10 + 5 + 75 + 30 5 ) ) a 2 17.7711 a 2 V = 1 3 ( 5 + 4 5 ) a 3 4.6481 a 3 {\displaystyle {\begin{aligned}A&=\left(10+{\sqrt {{\frac {5}{2}}\left(10+{\sqrt {5}}+{\sqrt {75+30{\sqrt {5}}}}\right)}}\right)a^{2}\\&\approx 17.7711a^{2}\\V&={\frac {1}{3}}\left(5+4{\sqrt {5}}\right)a^{3}\\&\approx 4.6481a^{3}\end{aligned}}}
31 Pentagonal
gyrobicupola
20 40 22 D 5 d {\displaystyle D_{5d}} of order 20 A = ( 10 + 5 2 ( 10 + 5 + 75 + 30 5 ) ) a 2 17.7711 a 2 V = 1 3 ( 5 + 4 5 ) a 3 4.6481 a 3 {\displaystyle {\begin{aligned}A&=\left(10+{\sqrt {{\frac {5}{2}}\left(10+{\sqrt {5}}+{\sqrt {75+30{\sqrt {5}}}}\right)}}\right)a^{2}\\&\approx 17.7711a^{2}\\V&={\frac {1}{3}}\left(5+4{\sqrt {5}}\right)a^{3}\\&\approx 4.6481a^{3}\end{aligned}}}
32 Pentagonal
orthocupolarotunda
25 50 27 C 5 v {\displaystyle C_{5v}} of order 10 A = ( 5 + 1 4 1900 + 490 5 + 210 75 + 30 5 ) a 2 23.5385 a 2 V = 5 12 ( 11 + 5 5 ) a 3 9.2418 a 3 {\displaystyle {\begin{aligned}A&=\left(5+{\frac {1}{4}}{\sqrt {1900+490{\sqrt {5}}+210{\sqrt {75+30{\sqrt {5}}}}}}\right)a^{2}\\&\approx 23.5385a^{2}\\V&={\frac {5}{12}}\left(11+5{\sqrt {5}}\right)a^{3}\\&\approx 9.2418a^{3}\end{aligned}}}
33 Pentagonal
gyrocupolarotunda
25 50 27 C 5 v {\displaystyle C_{5v}} of order 10 A = ( 5 + 15 4 3 + 7 4 25 + 10 5 ) a 2 23.5385 a 2 V = 5 12 ( 11 + 5 5 ) a 3 9.2418 a 3 {\displaystyle {\begin{aligned}A&=\left(5+{\frac {15}{4}}{\sqrt {3}}+{\frac {7}{4}}{\sqrt {25+10{\sqrt {5}}}}\right)a^{2}\\&\approx 23.5385a^{2}\\V&={\frac {5}{12}}\left(11+5{\sqrt {5}}\right)a^{3}\\&\approx 9.2418a^{3}\end{aligned}}}
34 Pentagonal
orthobirotunda
30 60 32 D 5 h {\displaystyle D_{5h}} of order 20 A = ( ( 5 3 + 3 5 ( 5 + 2 5 ) ) a 2 29.306 a 2 V = 1 6 ( 45 + 17 5 ) a 3 13.8355 a 3 {\displaystyle {\begin{aligned}A&=\left((5{\sqrt {3}}+3{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 29.306a^{2}\\V&={\frac {1}{6}}(45+17{\sqrt {5}})a^{3}\\&\approx 13.8355a^{3}\end{aligned}}}
35 Elongated
triangular
orthobicupola
18 36 20 D 3 h {\displaystyle D_{3h}} of order 12 A = 2 ( 6 + 3 ) a 2 15.4641 a 2 V = ( 5 2 3 + 3 3 2 ) a 3 4.9551 a 3 {\displaystyle {\begin{aligned}A&=2(6+{\sqrt {3}})a^{2}\\&\approx 15.4641a^{2}\\V&=\left({\frac {5{\sqrt {2}}}{3}}+{\frac {3{\sqrt {3}}}{2}}\right)a^{3}\\&\approx 4.9551a^{3}\end{aligned}}}
36 Elongated
triangular
gyrobicupola
18 36 20 D 3 d {\displaystyle D_{3d}} of order 12 A = 2 ( 6 + 3 ) a 2 15.4641 a 2 V = ( 5 2 3 + 3 3 2 ) a 3 4.9551 a 3 {\displaystyle {\begin{aligned}A&=2(6+{\sqrt {3}})a^{2}\\&\approx 15.4641a^{2}\\V&=\left({\frac {5{\sqrt {2}}}{3}}+{\frac {3{\sqrt {3}}}{2}}\right)a^{3}\\&\approx 4.9551a^{3}\end{aligned}}}
37 Elongated
square
gyrobicupola
24 48 26 D 4 d {\displaystyle D_{4d}} of order 16 A = 2 ( 9 + 3 ) a 2 21.4641 a 2 V = ( 4 + 10 2 3 ) a 3 8.714 a 3 {\displaystyle {\begin{aligned}A&=2(9+{\sqrt {3}})a^{2}\\&\approx 21.4641a^{2}\\V&=\left(4+{\frac {10{\sqrt {2}}}{3}}\right)a^{3}\\&\approx 8.714a^{3}\end{aligned}}}
38 Elongated
pentagonal
orthobicupola
30 60 32 D 5 h {\displaystyle D_{5h}} of order 20 A = ( 20 + 5 2 ( 10 + 5 + 75 + 30 5 ) ) a 2 27.7711 a 2 V = 1 6 ( 10 + 8 5 + 15 5 + 2 5 ) a 3 12.3423 a 3 {\displaystyle {\begin{aligned}A&=\left(20+{\sqrt {{\frac {5}{2}}\left(10+{\sqrt {5}}+{\sqrt {75+30{\sqrt {5}}}}\right)}}\right)a^{2}\\&\approx 27.7711a^{2}\\V&={\frac {1}{6}}\left(10+8{\sqrt {5}}+15{\sqrt {5+2{\sqrt {5}}}}\right)a^{3}\\&\approx 12.3423a^{3}\end{aligned}}}
39 Elongated
pentagonal
gyrobicupola
30 60 32 D 5 d {\displaystyle D_{5d}} of order 20 A = ( 20 + 5 2 ( 10 + 5 + 75 + 30 5 ) ) a 2 27.7711 a 2 V = 1 6 ( 10 + 8 5 + 15 5 + 2 5 ) a 3 12.3423 a 3 {\displaystyle {\begin{aligned}A&=\left(20+{\sqrt {{\frac {5}{2}}\left(10+{\sqrt {5}}+{\sqrt {75+30{\sqrt {5}}}}\right)}}\right)a^{2}\\&\approx 27.7711a^{2}\\V&={\frac {1}{6}}\left(10+8{\sqrt {5}}+15{\sqrt {5+2{\sqrt {5}}}}\right)a^{3}\\&\approx 12.3423a^{3}\end{aligned}}}
40 Elongated
pentagonal
orthocupolarotunda
35 70 37 C 5 v {\displaystyle C_{5v}} of order 10 A = 1 4 ( 60 + 10 ( 190 + 49 5 + 21 75 + 30 5 ) ) a 2 33.5385 a 2 V = 5 12 ( 11 + 5 5 + 6 5 + 2 5 ) a 3 16.936 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{4}}\left(60+{\sqrt {10\left(190+49{\sqrt {5}}+21{\sqrt {75+30{\sqrt {5}}}}\right)}}\right)a^{2}\\&\approx 33.5385a^{2}\\V&={\frac {5}{12}}\left(11+5{\sqrt {5}}+6{\sqrt {5+2{\sqrt {5}}}}\right)a^{3}\\&\approx 16.936a^{3}\end{aligned}}}
41 Elongated
pentagonal
gyrocupolarotunda
35 70 37 C 5 v {\displaystyle C_{5v}} of order 10 A = 1 4 ( 60 + 10 ( 190 + 49 5 + 21 75 + 30 5 ) ) a 2 33.5385 a 2 V = 5 12 ( 11 + 5 5 + 6 5 + 2 5 ) a 3 16.936 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{4}}\left(60+{\sqrt {10\left(190+49{\sqrt {5}}+21{\sqrt {75+30{\sqrt {5}}}}\right)}}\right)a^{2}\\&\approx 33.5385a^{2}\\V&={\frac {5}{12}}\left(11+5{\sqrt {5}}+6{\sqrt {5+2{\sqrt {5}}}}\right)a^{3}\\&\approx 16.936a^{3}\end{aligned}}}
42 Elongated
pentagonal
orthobirotunda
40 80 42 D 5 h {\displaystyle D_{5h}} of order 20 A = ( 10 + 30 ( 10 + 3 5 + 75 + 30 5 ) ) a 2 39.306 a 2 V = 1 6 ( 45 + 17 5 + 15 5 + 2 5 ) a 3 21.5297 a 3 {\displaystyle {\begin{aligned}A&=\left(10+{\sqrt {30\left(10+3{\sqrt {5}}+{\sqrt {75+30{\sqrt {5}}}}\right)}}\right)a^{2}\\&\approx 39.306a^{2}\\V&={\frac {1}{6}}\left(45+17{\sqrt {5}}+15{\sqrt {5+2{\sqrt {5}}}}\right)a^{3}\\&\approx 21.5297a^{3}\end{aligned}}}
43 Elongated
pentagonal
gyrobirotunda
40 80 42 D 5 d {\displaystyle D_{5d}} of order 20 A = ( 10 + 30 ( 10 + 3 5 + 75 + 30 5 ) ) a 2 39.306 a 2 V = 1 6 ( 45 + 17 5 + 15 5 + 2 5 ) a 3 21.5297 a 3 {\displaystyle {\begin{aligned}A&=\left(10+{\sqrt {30\left(10+3{\sqrt {5}}+{\sqrt {75+30{\sqrt {5}}}}\right)}}\right)a^{2}\\&\approx 39.306a^{2}\\V&={\frac {1}{6}}\left(45+17{\sqrt {5}}+15{\sqrt {5+2{\sqrt {5}}}}\right)a^{3}\\&\approx 21.5297a^{3}\end{aligned}}}
44 Gyroelongated
triangular
bicupola
18 42 26 D 3 {\displaystyle D_{3}} of order 6 A = ( 6 + 5 3 ) a 2 14.6603 a 2 V = 2 ( 5 3 + 1 + 3 ) a 3 4.6946 a 3 {\displaystyle {\begin{aligned}A&=\left(6+5{\sqrt {3}}\right)a^{2}\\&\approx 14.6603a^{2}\\V&={\sqrt {2}}\left({\frac {5}{3}}+{\sqrt {1+{\sqrt {3}}}}\right)a^{3}\\&\approx 4.6946a^{3}\end{aligned}}}
45 Gyroelongated
square
bicupola
24 56 34 D 4 {\displaystyle D_{4}} of order 8 A = ( 10 + 6 3 ) a 2 20.3923 a 2 V = ( 2 + 4 3 2 + 2 3 4 + 2 2 + 2 146 + 103 2 ) a 3 8.1536 a 3 {\displaystyle {\begin{aligned}A&=\left(10+6{\sqrt {3}}\right)a^{2}\\&\approx 20.3923a^{2}\\V&=\left(2+{\frac {4}{3}}{\sqrt {2}}+{\frac {2}{3}}{\sqrt {4+2{\sqrt {2}}+2{\sqrt {146+103{\sqrt {2}}}}}}\right)a^{3}\\&\approx 8.1536a^{3}\end{aligned}}}
46 Gyroelongated
pentagonal
bicupola
30 70 42 D 5 {\displaystyle D_{5}} of order 10 A = 1 2 ( 20 + 15 3 + 25 + 10 5 ) a 2 26.4313 a 2 V = ( 5 3 + 4 3 5 + 5 6 2 650 + 290 5 2 5 2 ) a 3 11.3974 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{2}}\left(20+15{\sqrt {3}}+{\sqrt {25+10{\sqrt {5}}}}\right)a^{2}\\&\approx 26.4313a^{2}\\V&=\left({\frac {5}{3}}+{\frac {4}{3}}{\sqrt {5}}+{\frac {5}{6}}{\sqrt {2{\sqrt {650+290{\sqrt {5}}}}-2{\sqrt {5}}-2}}\right)a^{3}\\&\approx 11.3974a^{3}\end{aligned}}}
47 Gyroelongated
pentagonal
cupolarotunda
35 80 47 C 5 {\displaystyle C_{5}} of order 5 A = 1 4 ( 20 + 35 3 + 7 25 + 10 5 ) a 2 32.1988 a 2 V = ( 55 12 + 25 12 5 + 5 6 2 650 + 290 5 2 5 2 ) a 3 15.9911 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{4}}\left(20+35{\sqrt {3}}+7{\sqrt {25+10{\sqrt {5}}}}\right)a^{2}\\&\approx 32.1988a^{2}\\V&=\left({\frac {55}{12}}+{\frac {25}{12}}{\sqrt {5}}+{\frac {5}{6}}{\sqrt {2{\sqrt {650+290{\sqrt {5}}}}-2{\sqrt {5}}-2}}\right)a^{3}\\&\approx 15.9911a^{3}\end{aligned}}}
48 Gyroelongated
pentagonal
birotunda
40 90 52 D 5 {\displaystyle D_{5}} of order 10 A = ( 10 3 + 3 25 + 10 5 ) a 2 37.9662 a 2 V = ( 45 6 + 17 6 5 + 5 6 2 650 + 290 5 2 5 2 ) a 3 20.5848 a 3 {\displaystyle {\begin{aligned}A&=\left(10{\sqrt {3}}+3{\sqrt {25+10{\sqrt {5}}}}\right)a^{2}\\&\approx 37.9662a^{2}\\V&=\left({\frac {45}{6}}+{\frac {17}{6}}{\sqrt {5}}+{\frac {5}{6}}{\sqrt {2{\sqrt {650+290{\sqrt {5}}}}-2{\sqrt {5}}-2}}\right)a^{3}\\&\approx 20.5848a^{3}\end{aligned}}}
49 Augmented
triangular
prism
7 13 8 C 2 v {\displaystyle C_{2v}} of order 4 A = 1 2 ( 4 + 3 3 ) a 2 4.5981 a 2 V = 1 12 ( 2 2 + 3 3 ) a 3 0.6687 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{2}}(4+3{\sqrt {3}})a^{2}\\&\approx 4.5981a^{2}\\V&={\frac {1}{12}}(2{\sqrt {2}}+3{\sqrt {3}})a^{3}\\&\approx 0.6687a^{3}\end{aligned}}}
50 Biaugmented
triangular
prism
8 17 11 C 2 v {\displaystyle C_{2v}} of order 4 A = 1 2 ( 2 + 5 3 ) a 2 5.3301 a 2 V = 59 144 + 1 6 a 3 0.9044 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{2}}(2+5{\sqrt {3}})a^{2}\\&\approx 5.3301a^{2}\\V&={\sqrt {{\frac {59}{144}}+{\frac {1}{\sqrt {6}}}}}a^{3}\\&\approx 0.9044a^{3}\end{aligned}}}
51 Triaugmented
triangular
prism
9 21 14 D 3 h {\displaystyle D_{3h}} of order 12 A = 7 3 2 a 2 6.0622 a 2 V = 2 2 + 3 4 a 3 1.1401 a 3 {\displaystyle {\begin{aligned}A&={\frac {7{\sqrt {3}}}{2}}a^{2}\\&\approx 6.0622a^{2}\\V&={\frac {2{\sqrt {2}}+{\sqrt {3}}}{4}}a^{3}\\&\approx 1.1401a^{3}\end{aligned}}}
52 Augmented
pentagonal
prism
11 19 10 C 2 v {\displaystyle C_{2v}} of order 4 A = 1 2 ( 8 + 2 3 + 5 ( 5 + 2 5 ) ) a 2 9.173 a 2 V = 1 12 233 + 90 5 + 12 50 + 20 5 a 3 1.9562 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{2}}\left(8+2{\sqrt {3}}+{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 9.173a^{2}\\V&={\frac {1}{12}}{\sqrt {233+90{\sqrt {5}}+12{\sqrt {50+20{\sqrt {5}}}}}}a^{3}\\&\approx 1.9562a^{3}\end{aligned}}}
53 Biaugmented
pentagonal
prism
12 23 13 C 2 v {\displaystyle C_{2v}} of order 4 A = 1 2 a 2 ( 6 + 4 3 + 5 ( 5 + 2 5 ) ) 9.9051 a 2 V = 1 12 a 3 257 + 90 5 + 24 50 + 20 5 2.1919 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{2}}a^{2}\left(6+4{\sqrt {3}}+{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)\\&\approx 9.9051a^{2}\\V&={\frac {1}{12}}a^{3}{\sqrt {257+90{\sqrt {5}}+24{\sqrt {50+20{\sqrt {5}}}}}}\\&\approx 2.1919a^{3}\end{aligned}}}
54 Augmented
hexagonal
prism
13 22 11 C 2 v {\displaystyle C_{2v}} of order 4 A = ( 5 + 4 3 ) a 2 11.9282 a 2 V = 1 6 ( 2 + 9 3 ) a 3 2.8338 a 3 {\displaystyle {\begin{aligned}A&=(5+4{\sqrt {3}})a^{2}\\&\approx 11.9282a^{2}\\V&={\frac {1}{6}}\left({\sqrt {2}}+9{\sqrt {3}}\right)a^{3}\\&\approx 2.8338a^{3}\end{aligned}}}
55 Parabiaugmented
hexagonal
prism
14 26 14 D 2 h {\displaystyle D_{2h}} of order 8 A = ( 4 + 5 3 ) a 2 12.6603 a 2 V = 1 6 ( 2 2 + 9 3 ) a 3 3.0695 a 3 {\displaystyle {\begin{aligned}A&=(4+5{\sqrt {3}})a^{2}\\&\approx 12.6603a^{2}\\V&={\frac {1}{6}}\left(2{\sqrt {2}}+9{\sqrt {3}}\right)a^{3}\\&\approx 3.0695a^{3}\end{aligned}}}
56 Metabiaugmented
hexagonal
prism
14 26 14 C 2 v {\displaystyle C_{2v}} of order 4 A = ( 4 + 5 3 ) a 2 12.6603 a 2 V = 1 6 ( 2 2 + 9 3 ) a 3 3.0695 a 3 {\displaystyle {\begin{aligned}A&=(4+5{\sqrt {3}})a^{2}\\&\approx 12.6603a^{2}\\V&={\frac {1}{6}}\left(2{\sqrt {2}}+9{\sqrt {3}}\right)a^{3}\\&\approx 3.0695a^{3}\end{aligned}}}
57 Triaugmented
hexagonal
prism
15 30 17 D 3 h {\displaystyle D_{3h}} of order 12 A = 3 ( 1 + 2 3 ) a 2 13.3923 a 2 V = ( 1 2 + 3 3 2 ) a 3 3.3052 a 3 {\displaystyle {\begin{aligned}A&=3\left(1+2{\sqrt {3}}\right)a^{2}\\&\approx 13.3923a^{2}\\V&=\left({\frac {1}{\sqrt {2}}}+{\frac {3{\sqrt {3}}}{2}}\right)a^{3}\\&\approx 3.3052a^{3}\end{aligned}}}
58 Augmented
dodecahedron
21 35 16 C 5 v {\displaystyle C_{5v}} of order 10 A = 1 4 ( 5 3 + 11 5 ( 5 + 2 5 ) ) a 2 21.0903 a 2 V = 1 24 ( 95 + 43 5 ) a 3 7.9646 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{4}}\left(5{\sqrt {3}}+11{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 21.0903a^{2}\\V&={\frac {1}{24}}\left(95+43{\sqrt {5}}\right)a^{3}\\&\approx 7.9646a^{3}\end{aligned}}}
59 Parabiaugmented
dodecahedron
22 40 20 D 5 d {\displaystyle D_{5d}} of order 20 A = 5 2 ( 3 + 5 ( 5 + 2 5 ) ) a 2 21.5349 a 2 V = 1 6 ( 25 + 11 5 ) a 3 8.2661 a 3 {\displaystyle {\begin{aligned}A&={\frac {5}{2}}\left({\sqrt {3}}+{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 21.5349a^{2}\\V&={\frac {1}{6}}\left(25+11{\sqrt {5}}\right)a^{3}\\&\approx 8.2661a^{3}\end{aligned}}}
60 Metabiaugmented
dodecahedron
22 40 20 C 2 v {\displaystyle C_{2v}} of order 4 A = 5 2 ( 3 + 5 ( 5 + 2 5 ) ) a 2 21.5349 a 2 V = 1 6 ( 25 + 11 5 ) a 3 8.2661 a 3 {\displaystyle {\begin{aligned}A&={\frac {5}{2}}\left({\sqrt {3}}+{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 21.5349a^{2}\\V&={\frac {1}{6}}\left(25+11{\sqrt {5}}\right)a^{3}\\&\approx 8.2661a^{3}\end{aligned}}}
61 Triaugmented
dodecahedron
23 45 24 C 3 v {\displaystyle C_{3v}} of order 6 A = 3 4 ( 5 3 + 3 5 ( 5 + 2 5 ) ) a 2 21.9795 a 2 V = 5 8 ( 7 + 3 5 ) a 3 8.5676 a 3 {\displaystyle {\begin{aligned}A&={\frac {3}{4}}\left(5{\sqrt {3}}+3{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 21.9795a^{2}\\V&={\frac {5}{8}}\left(7+3{\sqrt {5}}\right)a^{3}\\&\approx 8.5676a^{3}\end{aligned}}}
62 Metabidiminished
icosahedron
10 20 12 C 2 v {\displaystyle C_{2v}} of order 4 A = 1 2 ( 5 3 + 5 ( 5 + 2 5 ) ) a 2 7.7711 a 2 V = 1 6 ( 5 + 2 5 ) a 3 1.5787 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{2}}\left(5{\sqrt {3}}+{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 7.7711a^{2}\\V&={\frac {1}{6}}\left(5+2{\sqrt {5}}\right)a^{3}\\&\approx 1.5787a^{3}\end{aligned}}}
63 Tridiminished
icosahedron
9 15 8 C 3 v {\displaystyle C_{3v}} of order 6 A = 1 4 ( 5 3 + 3 5 ( 5 + 2 5 ) ) a 3 7.3265 a 3 V = ( 5 8 + 7 5 24 ) a 3 1.2772 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{4}}\left(5{\sqrt {3}}+3{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{3}\\&\approx 7.3265a^{3}\\V&=\left({\frac {5}{8}}+{\frac {7{\sqrt {5}}}{24}}\right)a^{3}\\&\approx 1.2772a^{3}\end{aligned}}}
64 Augmented
tridiminished
icosahedron
10 18 10 C 3 v {\displaystyle C_{3v}} of order 6 A = 1 4 ( 7 3 + 3 5 ( 5 + 2 5 ) ) a 2 8.1925 a 2 V = 1 24 ( 15 + 2 2 + 7 5 ) a 3 1.395 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{4}}\left(7{\sqrt {3}}+3{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 8.1925a^{2}\\V&={\frac {1}{24}}\left(15+2{\sqrt {2}}+7{\sqrt {5}}\right)a^{3}\\&\approx 1.395a^{3}\end{aligned}}}
65 Augmented
truncated
tetrahedron
15 27 14 C 3 v {\displaystyle C_{3v}} of order 6 A = 1 2 ( 6 + 13 3 ) a 2 14.2583 a 2 V = 11 2 2 a 3 3.8891 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{2}}\left(6+13{\sqrt {3}}\right)a^{2}\\&\approx 14.2583a^{2}\\V&={\frac {11}{2{\sqrt {2}}}}a^{3}\\&\approx 3.8891a^{3}\end{aligned}}}
66 Augmented
truncated
cube
28 48 22 C 4 v {\displaystyle C_{4v}} of order 8 A = ( 15 + 10 2 + 3 3 ) a 2 34.3383 a 2 V = ( 8 + 16 2 3 ) a 3 15.5425 a 3 {\displaystyle {\begin{aligned}A&=(15+10{\sqrt {2}}+3{\sqrt {3}})a^{2}\\&\approx 34.3383a^{2}\\V&=\left(8+{\frac {16{\sqrt {2}}}{3}}\right)a^{3}\\&\approx 15.5425a^{3}\end{aligned}}}
67 Biaugmented
truncated
cube
32 60 30 D 4 h {\displaystyle D_{4h}} of order 16 A = 2 ( 9 + 4 2 + 2 3 ) a 2 36.2419 a 2 V = ( 9 + 6 2 ) a 3 17.4853 a 3 {\displaystyle {\begin{aligned}A&=2\left(9+4{\sqrt {2}}+2{\sqrt {3}}\right)a^{2}\\&\approx 36.2419a^{2}\\V&=(9+6{\sqrt {2}})a^{3}\\&\approx 17.4853a^{3}\end{aligned}}}
68 Augmented
truncated
dodecahedron
65 105 42 C 5 v {\displaystyle C_{5v}} of order 10 A = 1 4 ( 20 + 25 3 + 110 5 + 2 5 + 5 ( 5 + 2 5 ) ) a 2 102.1821 a 2 V = ( 505 12 + 81 5 4 ) a 3 87.3637 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{4}}\left(20+25{\sqrt {3}}+110{\sqrt {5+2{\sqrt {5}}}}+{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 102.1821a^{2}\\V&=\left({\frac {505}{12}}+{\frac {81{\sqrt {5}}}{4}}\right)a^{3}\\&\approx 87.3637a^{3}\end{aligned}}}
69 Parabiaugmented
truncated
dodecahedron
70 120 52 D 5 d {\displaystyle D_{5d}} of order 20 A = 1 2 ( 20 + 15 3 + 50 5 + 2 5 + 5 ( 5 + 2 5 ) ) a 2 103.3734 a 2 V = 1 12 ( 515 + 251 5 ) a 3 89.6878 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{2}}\left(20+15{\sqrt {3}}+50{\sqrt {5+2{\sqrt {5}}}}+{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 103.3734a^{2}\\V&={\frac {1}{12}}\left(515+251{\sqrt {5}}\right)a^{3}\\&\approx 89.6878a^{3}\end{aligned}}}
70 Metabiaugmented
truncated
dodecahedron
70 120 52 C 2 v {\displaystyle C_{2v}} of order 4 A = 1 2 ( 20 + 15 3 + 50 5 + 2 5 + 5 ( 5 + 2 5 ) ) a 2 103.3734 a 2 V = 1 12 ( 515 + 251 5 ) a 3 89.6878 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{2}}\left(20+15{\sqrt {3}}+50{\sqrt {5+2{\sqrt {5}}}}+{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 103.3734a^{2}\\V&={\frac {1}{12}}\left(515+251{\sqrt {5}}\right)a^{3}\\&\approx 89.6878a^{3}\end{aligned}}}
71 Triaugmented
truncated
dodecahedron
75 135 62 C 3 v {\displaystyle C_{3v}} of order 6 A = 1 4 ( 60 + 35 3 + 90 5 + 2 5 + 3 5 ( 5 + 2 5 ) ) a 2 104.5648 a 2 V = 7 12 ( 75 + 37 5 ) a 3 92.0118 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{4}}\left(60+35{\sqrt {3}}+90{\sqrt {5+2{\sqrt {5}}}}+3{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 104.5648a^{2}\\V&={\frac {7}{12}}\left(75+37{\sqrt {5}}\right)a^{3}\\&\approx 92.0118a^{3}\end{aligned}}}
72 Gyrate
rhombicosidodecahedron
60 120 62 C 5 v {\displaystyle C_{5v}} of order 10 A = ( 30 + 5 3 + 3 5 ( 5 + 2 5 ) ) a 2 59.306 a 2 V = ( 20 + 29 5 3 ) a 3 41.6153 a 3 {\displaystyle {\begin{aligned}A&=\left(30+5{\sqrt {3}}+3{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 59.306a^{2}\\V&=\left(20+{\frac {29{\sqrt {5}}}{3}}\right)a^{3}\\&\approx 41.6153a^{3}\end{aligned}}}
73 Parabigyrate
rhombicosidodecahedron
60 120 62 D 5 d {\displaystyle D_{5d}} of order 20 A = ( 30 + 5 3 + 3 5 ( 5 + 2 5 ) ) a 2 59.306 a 2 V = ( 20 + 29 5 3 ) a 3 41.6153 a 3 {\displaystyle {\begin{aligned}A&=\left(30+5{\sqrt {3}}+3{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 59.306a^{2}\\V&=\left(20+{\frac {29{\sqrt {5}}}{3}}\right)a^{3}\\&\approx 41.6153a^{3}\end{aligned}}}
74 Metabigyrate
rhombicosidodecahedron
60 120 62 C 2 v {\displaystyle C_{2v}} of order 4 A = ( 30 + 5 3 + 3 5 ( 5 + 2 5 ) ) a 2 59.306 a 2 V = ( 20 + 29 5 3 ) a 3 41.6153 a 3 {\displaystyle {\begin{aligned}A&=\left(30+5{\sqrt {3}}+3{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 59.306a^{2}\\V&=\left(20+{\frac {29{\sqrt {5}}}{3}}\right)a^{3}\\&\approx 41.6153a^{3}\end{aligned}}}
75 Trigyrate
rhombicosidodecahedron
60 120 62 C 3 v {\displaystyle C_{3v}} of order 6 A = ( 30 + 5 3 + 3 5 ( 5 + 2 5 ) ) a 2 59.306 a 2 V = ( 20 + 29 5 3 ) a 3 41.6153 a 3 {\displaystyle {\begin{aligned}A&=\left(30+5{\sqrt {3}}+3{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 59.306a^{2}\\V&=\left(20+{\frac {29{\sqrt {5}}}{3}}\right)a^{3}\\&\approx 41.6153a^{3}\end{aligned}}}
76 Diminished
rhombicosidodecahedron
55 105 52 C 5 v {\displaystyle C_{5v}} of order 10 A = 1 4 ( 100 + 15 3 + 10 5 + 2 5 + 11 5 ( 5 + 2 5 ) ) a 2 58.1147 a 2 V = ( 115 6 + 9 5 ) a 3 39.2913 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{4}}\left(100+15{\sqrt {3}}+10{\sqrt {5+2{\sqrt {5}}}}+11{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 58.1147a^{2}\\V&=\left({\frac {115}{6}}+9{\sqrt {5}}\right)a^{3}\\&\approx 39.2913a^{3}\end{aligned}}}
77 Paragyrate
diminished
rhombicosidodecahedron
55 105 52 C 5 v {\displaystyle C_{5v}} of order 10 A = 1 4 ( 100 + 15 3 + 10 5 + 2 5 + 11 5 ( 5 + 2 5 ) ) a 2 58.1147 a 2 V = ( 115 6 + 9 5 ) a 3 39.2913 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{4}}\left(100+15{\sqrt {3}}+10{\sqrt {5+2{\sqrt {5}}}}+11{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 58.1147a^{2}\\V&=\left({\frac {115}{6}}+9{\sqrt {5}}\right)a^{3}\\&\approx 39.2913a^{3}\end{aligned}}}
78 Metagyrate
diminished
rhombicosidodecahedron
55 105 52 C s {\displaystyle C_{s}} of order 2 A = 1 4 ( 100 + 15 3 + 10 5 + 2 5 + 11 5 ( 5 + 2 5 ) ) a 2 58.1147 a 2 V = ( 115 6 + 9 5 ) a 3 39.2913 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{4}}\left(100+15{\sqrt {3}}+10{\sqrt {5+2{\sqrt {5}}}}+11{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 58.1147a^{2}\\V&=\left({\frac {115}{6}}+9{\sqrt {5}}\right)a^{3}\\&\approx 39.2913a^{3}\end{aligned}}}
79 Bigyrate
diminished
rhombicosidodecahedron
55 105 52 C s {\displaystyle C_{s}} of order 2 A = 1 4 ( 100 + 15 3 + 10 5 + 2 5 + 11 5 ( 5 + 2 5 ) ) a 2 58.1147 a 2 V = ( 115 6 + 9 5 ) a 3 39.2913 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{4}}\left(100+15{\sqrt {3}}+10{\sqrt {5+2{\sqrt {5}}}}+11{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 58.1147a^{2}\\V&=\left({\frac {115}{6}}+9{\sqrt {5}}\right)a^{3}\\&\approx 39.2913a^{3}\end{aligned}}}
80 Parabidiminished
rhombicosidodecahedron
50 90 42 D 5 d {\displaystyle D_{5d}} of order 20 A = 5 2 ( 8 + 3 + 2 5 + 2 5 + 5 ( 5 + 2 5 ) ) a 2 56.9233 a 2 V = 5 3 ( 11 + 5 5 ) a 3 36.9672 a 3 {\displaystyle {\begin{aligned}A&={\frac {5}{2}}\left(8+{\sqrt {3}}+2{\sqrt {5+2{\sqrt {5}}}}+{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 56.9233a^{2}\\V&={\frac {5}{3}}\left(11+5{\sqrt {5}}\right)a^{3}\\&\approx 36.9672a^{3}\end{aligned}}}
81 Metabidiminished
rhombicosidodecahedron
50 90 42 C 2 v {\displaystyle C_{2v}} of order 4 A = 5 2 ( 8 + 3 + 2 5 + 2 5 + 5 ( 5 + 2 5 ) ) a 2 56.9233 a 2 V = 5 3 ( 11 + 5 5 ) a 3 36.9672 a 3 {\displaystyle {\begin{aligned}A&={\frac {5}{2}}\left(8+{\sqrt {3}}+2{\sqrt {5+2{\sqrt {5}}}}+{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 56.9233a^{2}\\V&={\frac {5}{3}}\left(11+5{\sqrt {5}}\right)a^{3}\\&\approx 36.9672a^{3}\end{aligned}}}
82 Gyrate
bidiminished
rhombicosidodecahedron
50 90 42 C s {\displaystyle C_{s}} of order 2 A = 5 2 ( 8 + 3 + 2 5 + 2 5 + 5 ( 5 + 2 5 ) ) a 2 56.9233 a 2 V = 5 3 ( 11 + 5 5 ) a 3 36.9672 a 3 {\displaystyle {\begin{aligned}A&={\frac {5}{2}}\left(8+{\sqrt {3}}+2{\sqrt {5+2{\sqrt {5}}}}+{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 56.9233a^{2}\\V&={\frac {5}{3}}\left(11+5{\sqrt {5}}\right)a^{3}\\&\approx 36.9672a^{3}\end{aligned}}}
83 Tridiminished
rhombicosidodecahedron
45 75 32 C 3 v {\displaystyle C_{3v}} of order 6 A = 1 4 ( 60 + 5 3 + 30 5 + 2 5 + 9 5 ( 5 + 2 5 ) ) a 2 55.732 a 2 V = ( 35 2 + 23 5 3 ) a 3 34.6432 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{4}}\left(60+5{\sqrt {3}}+30{\sqrt {5+2{\sqrt {5}}}}+9{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 55.732a^{2}\\V&=\left({\frac {35}{2}}+{\frac {23{\sqrt {5}}}{3}}\right)a^{3}\\&\approx 34.6432a^{3}\end{aligned}}}
84 Snub
disphenoid
8 18 12 D 2 d {\displaystyle D_{2d}} of order 8 A = 3 3 a 2 5.1962 a 2 V 0.8595 a 3 {\displaystyle {\begin{aligned}A&=3{\sqrt {3}}a^{2}\\&\approx 5.1962a^{2}\\V&\approx 0.8595a^{3}\end{aligned}}}
85 Snub
square
antiprism
16 40 26 D 4 d {\displaystyle D_{4d}} of order 16 A = 2 ( 1 + 3 3 ) a 2 12.3923 a 2 V 3.6012 a 3 {\displaystyle {\begin{aligned}A&=2\left(1+3{\sqrt {3}}\right)a^{2}\\&\approx 12.3923a^{2}\\V&\approx 3.6012a^{3}\end{aligned}}}
86 Sphenocorona 10 22 14 C 2 v {\displaystyle C_{2v}} of order 4 A = ( 2 + 3 3 ) a 2 7.1962 a 2 V = 1 2 a 3 1 + 3 3 2 + 13 + 3 6 1.5154 a 3 {\displaystyle {\begin{aligned}A&=(2+3{\sqrt {3}})a^{2}\\&\approx 7.1962a^{2}\\V&={\frac {1}{2}}a^{3}{\sqrt {1+3{\sqrt {\frac {3}{2}}}+{\sqrt {13+3{\sqrt {6}}}}}}\\&\approx 1.5154a^{3}\end{aligned}}}
87 Augmented
sphenocorona
11 26 17 C s {\displaystyle C_{s}} of order 2 A = ( 1 + 4 3 ) a 2 7.9282 a 2 V = 1 2 a 3 1 + 3 3 2 + 13 + 3 6 + 1 3 2 1.7511 a 3 {\displaystyle {\begin{aligned}A&=(1+4{\sqrt {3}})a^{2}\\&\approx 7.9282a^{2}\\V&={\frac {1}{2}}a^{3}{\sqrt {1+3{\sqrt {\frac {3}{2}}}+{\sqrt {13+3{\sqrt {6}}}}}}+{\frac {1}{3{\sqrt {2}}}}\\&\approx 1.7511a^{3}\end{aligned}}}
88 Sphenomegacorona 12 28 18 C 2 v {\displaystyle C_{2v}} of order 4 A = 2 ( 1 + 2 3 ) a 2 8.9282 a 2 V 1.9481 a 3 {\displaystyle {\begin{aligned}A&=2\left(1+2{\sqrt {3}}\right)a^{2}\\&\approx 8.9282a^{2}\\V&\approx 1.9481a^{3}\end{aligned}}}
89 Hebesphenomegacorona 14 33 21 C 2 v {\displaystyle C_{2v}} of order 4 A = 3 2 ( 2 + 3 3 ) a 2 10.7942 a 2 V 2.9129 a 3 {\displaystyle {\begin{aligned}A&={\frac {3}{2}}\left(2+3{\sqrt {3}}\right)a^{2}\\&\approx 10.7942a^{2}\\V&\approx 2.9129a^{3}\end{aligned}}}
90 Disphenocingulum 16 38 24 D 2 d {\displaystyle D_{2d}} of order 8 A = ( 4 + 5 3 ) a 2 12.6603 a 2 V 3.7776 a 3 {\displaystyle {\begin{aligned}A&=(4+5{\sqrt {3}})a^{2}\\&\approx 12.6603a^{2}\\V&\approx 3.7776a^{3}\end{aligned}}}
91 Bilunabirotunda 14 26 14 D 2 h {\displaystyle D_{2h}} of order 8 A = ( 2 + 2 3 + 5 ( 5 + 2 5 ) ) a 2 12.346 a 2 V = 1 12 ( 17 + 9 5 ) a 3 3.0937 a 3 {\displaystyle {\begin{aligned}A&=\left(2+2{\sqrt {3}}+{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 12.346a^{2}\\V&={\frac {1}{12}}\left(17+9{\sqrt {5}}\right)a^{3}\\&\approx 3.0937a^{3}\end{aligned}}}
92 Triangular
hebespenorotunda
18 36 20 C 3 v {\displaystyle C_{3v}} of order 6 A = 1 4 ( 12 + 19 3 + 3 5 ( 5 + 2 5 ) ) a 2 16.3887 a 2 V = ( 5 2 + 7 5 6 ) a 3 5.1087 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{4}}\left(12+19{\sqrt {3}}+3{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 16.3887a^{2}\\V&=\left({\frac {5}{2}}+{\frac {7{\sqrt {5}}}{6}}\right)a^{3}\\&\approx 5.1087a^{3}\end{aligned}}}

Notes

References

  • Berman, Martin (1971). "Regular-faced convex polyhedra". Journal of the Franklin Institute. 291 (5): 329–352. doi:10.1016/0016-0032(71)90071-8. MR 0290245.
  • Boissonnat, J. D.; Yvinec, M. (June 1989). Probing a scene of non convex polyhedra. Proceedings of the fifth annual symposium on Computational geometry. pp. 237–246. doi:10.1145/73833.73860.
  • Cromwell, Peter R. (1997). Polyhedra. Cambridge University Press.
  • Diudea, M. V. (2018). Multi-shell Polyhedral Clusters. Springer. doi:10.1007/978-3-319-64123-2. ISBN 978-3-319-64123-2.
  • Flusser, Jan; Suk, Tomas; Zitofa, Barbara (2017). 2D and 3D Image Analysis by Moments. John & Sons Wiley.
  • Hergert, Wolfram; Geilhufe, Matthias (2018). Group Theory in Solid State Physics and Photonics: Problem Solving with Mathematica. John & Sons Wiley. ISBN 978-3-527-41300-3.
  • Holme, Audun (2010). Geometry: Our Cultural Heritage. Springer. doi:10.1007/978-3-642-14441-7. ISBN 978-3-642-14441-7.
  • Johnson, Norman (1966). "Convex Solids with Regular Faces". Canadian Journal of Mathematics. 18: 169–200. doi:10.4153/CJM-1966-021-8.
  • Litchenberg, Dorovan R. (1988). "Pyramids, Prisms, Antiprisms, and Deltahedra". The Mathematics Teacher. 81 (4): 261–265. JSTOR 27965792.
  • Meyer, W. (2006). Geometry and Its Applications. Academic Press. ISBN 978-0-12-369427-0.
  • Parker, Sybil P. (1997). Dictionary of Mathematics. McGraw-Hill.
  • Powell, Richard C. (2010). Symmetry, Group Theory, and the Physical Properties of Crystals. Springer. doi:10.1007/978-1-4419-7598-0. ISBN 978-1-4419-7598-0.
  • Rajwade, A. R. (2001). Convex Polyhedra with Regularity Conditions and Hilbert's Third Problem. Texts and Readings in Mathematics. Hindustan Book Agency. doi:10.1007/978-93-86279-06-4. ISBN 978-93-86279-06-4.
  • Solomon, Ronald (2003). Abstract Algebra. American Mathematical Society. ISBN 978-0-8218-4795-4.
  • Slobodan, Mišić; Obradović, Marija; Ðukanović, Gordana (2015). "Composite Concave Cupolae as Geometric and Architectural Forms" (PDF). Journal for Geometry and Graphics. 19 (1): 79–91.
  • Todesco, Gian Marco (2020). "Hyperbolic Honeycomb". In Emmer, Michele; Abate, Marco (eds.). Imagine Math 7: Between Culture and Mathematics. Springer. doi:10.1007/978-3-030-42653-8. ISBN 978-3-030-42653-8.
  • Uehara, Ryuhei (2020). Introduction to Computational Origami: The World of New Computational Geometry. Springer. doi:10.1007/978-981-15-4470-5. ISBN 978-981-15-4470-5.
  • Walsh, Edward T. (2014). A First Course in Geometry. Dover Publications. ISBN 978-0-486-78020-7.
  • Williams, Kim; Monteleone, Cosino (2021). Daniele Barbaro’s Perspective of 1568. Springer. doi:10.1007/978-3-030-76687-0. ISBN 978-3-030-76687-0.
  • Zalgaller, Victor A. (1969). Convex Polyhedra with Regular Faces. Consultants Bureau.

External links

  • Gagnon, Sylvain (1982). "Convex polyhedra with regular faces" (PDF). Topologie Structurale [Structural Topology] (in French) (6): 83–95.
  • Hart, George W. "Johnson Solid".
  • "Johnson Polyhedra: Polyhedra with Regular Polygon Faces". See all of the categorized 92 Johnson solids images on one page.
  • "Johnson Solids".
  • Vladimir, Bulatov. "VRML models of Johnson Solids".
  • v
  • t
  • e
Pyramids, cupolae and rotundaeModified pyramidsModified cupolae and rotundae
Augmented prismsModified Platonic solidsModified Archimedean solidsElementary solids
(See also List of Johnson solids, a sortable table)