Elongated triangular pyramid

7th Johnson solid (7 faces)
Elongated triangular pyramid
TypeJohnson
J6J7J8
Faces4 triangles
3 squares
Edges12
Vertices7
Vertex configuration1(33)
3(3.42)
3(32.42)
Symmetry groupC3v, [3], (*33)
Rotation groupC3, [3]+, (33)
Dual polyhedronself
Propertiesconvex
Net
Johnson solid J7.

In geometry, the elongated triangular pyramid is one of the Johnson solids (J7). As the name suggests, it can be constructed by elongating a tetrahedron by attaching a triangular prism to its base. Like any elongated pyramid, the resulting solid is topologically (but not geometrically) self-dual.

Construction

The elongated triangular pyramid is constructed from a triangular prism by attaching regular tetrahedron onto one of its bases, a process known as elongation.[1] The tetrahedron covers an equilateral triangle, replacing it with three other equilateral triangles, so that the resulting polyhedron has four equilateral triangles and three squares as its faces.[2] A convex polyhedron in which all of the faces are regular polygons is called the Johnson solid, and the elongated triangular pyramid is among them, enumerated as the seventh Johnson solid J 7 {\displaystyle J_{7}} .[3]

Properties

An elongated triangular pyramid with edge length a {\displaystyle a} has a height, by adding the height of a regular tetrahedron and a triangular prism:[4]

( 1 + 6 3 ) a 1.816 a . {\displaystyle \left(1+{\frac {\sqrt {6}}{3}}\right)a\approx 1.816a.}
Its surface area can be calculated by adding the area of all eight equilateral triangles and three squares:[2]
( 3 + 3 ) a 2 4.732 a 2 , {\displaystyle \left(3+{\sqrt {3}}\right)a^{2}\approx 4.732a^{2},}
and its volume can be calculated by slicing it into a regular tetrahedron and a prism, adding their volume up:[2]:
( 1 12 ( 2 + 3 3 ) ) a 3 0.551 a 3 . {\displaystyle \left({\frac {1}{12}}\left({\sqrt {2}}+3{\sqrt {3}}\right)\right)a^{3}\approx 0.551a^{3}.}

It has the three-dimensional symmetry group, the cyclic group C 3 v {\displaystyle C_{3\mathrm {v} }} of order 6. Its dihedral angle can be calculated by adding the angle of the tetrahedron and the triangular prism:[5]

  • the dihedral angle of a tetrahedron between two adjacent triangular faces is arccos ( 1 3 ) 70.5 {\textstyle \arccos \left({\frac {1}{3}}\right)\approx 70.5^{\circ }} ;
  • the dihedral angle of the triangular prism between the square to its bases is π 2 = 90 {\textstyle {\frac {\pi }{2}}=90^{\circ }} , and the dihedral angle between square-to-triangle, on the edge where tetrahedron and triangular prism are attached, is arccos ( 1 3 ) + π 2 160.5 {\textstyle \arccos \left({\frac {1}{3}}\right)+{\frac {\pi }{2}}\approx 160.5^{\circ }} ;
  • the dihedral angle of the triangular prism between two adjacent square faces is the internal angle of an equilateral triangle π 3 = 60 {\textstyle {\frac {\pi }{3}}=60^{\circ }} .

Dual polyhedron

Topologically, the elongated triangular pyramid is its own dual. Geometrically, the dual has seven irregular faces: one equilateral triangle, three isosceles triangles and three isosceles trapezoids.

Dual elongated triangular pyramid Net of dual

Related polyhedra and honeycombs

The elongated triangular pyramid can form a tessellation of space with square pyramids and/or octahedra.[6]

References

  1. ^ Rajwade, A. R. (2001). Convex Polyhedra with Regularity Conditions and Hilbert's Third Problem. Texts and Readings in Mathematics. Hindustan Book Agency. p. 84–89. doi:10.1007/978-93-86279-06-4. ISBN 978-93-86279-06-4.
  2. ^ a b c Berman, Martin (1971). "Regular-faced convex polyhedra". Journal of the Franklin Institute. 291 (5): 329–352. doi:10.1016/0016-0032(71)90071-8. MR 0290245.
  3. ^ Uehara, Ryuhei (2020). Introduction to Computational Origami: The World of New Computational Geometry. Springer. p. 62. doi:10.1007/978-981-15-4470-5. ISBN 978-981-15-4470-5. S2CID 220150682.
  4. ^ Sapiña, R. "Area and volume of the Johnson solid J 8 {\displaystyle J_{8}} ". Problemas y Ecuaciones (in Spanish). ISSN 2659-9899. Retrieved 2020-09-09.
  5. ^ Johnson, Norman W. (1966). "Convex polyhedra with regular faces". Canadian Journal of Mathematics. 18: 169–200. doi:10.4153/cjm-1966-021-8. MR 0185507. S2CID 122006114. Zbl 0132.14603.
  6. ^ "J7 honeycomb".


External links

  • v
  • t
  • e
Pyramids, cupolae and rotundaeModified pyramidsModified cupolae and rotundae
Augmented prismsModified Platonic solidsModified Archimedean solidsElementary solids
(See also List of Johnson solids, a sortable table)