Clarkson's inequalities

In mathematics, Clarkson's inequalities, named after James A. Clarkson, are results in the theory of Lp spaces. They give bounds for the Lp-norms of the sum and difference of two measurable functions in Lp in terms of the Lp-norms of those functions individually.

Statement of the inequalities

Let (X, Σ, μ) be a measure space; let fg : X → R be measurable functions in Lp. Then, for 2 ≤ p < +∞,

f + g 2 L p p + f g 2 L p p 1 2 ( f L p p + g L p p ) . {\displaystyle \left\|{\frac {f+g}{2}}\right\|_{L^{p}}^{p}+\left\|{\frac {f-g}{2}}\right\|_{L^{p}}^{p}\leq {\frac {1}{2}}\left(\|f\|_{L^{p}}^{p}+\|g\|_{L^{p}}^{p}\right).}

For 1 < p < 2,

f + g 2 L p q + f g 2 L p q ( 1 2 f L p p + 1 2 g L p p ) q p , {\displaystyle \left\|{\frac {f+g}{2}}\right\|_{L^{p}}^{q}+\left\|{\frac {f-g}{2}}\right\|_{L^{p}}^{q}\leq \left({\frac {1}{2}}\|f\|_{L^{p}}^{p}+{\frac {1}{2}}\|g\|_{L^{p}}^{p}\right)^{\frac {q}{p}},}

where

1 p + 1 q = 1 , {\displaystyle {\frac {1}{p}}+{\frac {1}{q}}=1,}

i.e., q = p ⁄ (p − 1).

The case p ≥ 2 is somewhat easier to prove, being a simple application of the triangle inequality and the convexity of

x x p . {\displaystyle x\mapsto x^{p}.}

References

External links

  • Clarkson inequality at PlanetMath.
  • v
  • t
  • e
Lp spaces
Basic concepts
L1 spacesL2 spaces L {\displaystyle L^{\infty }} spacesMapsInequalitiesResults
For Lebesgue measure
Applications & related
  • v
  • t
  • e
Spaces
Properties
Theorems
Operators
Algebras
Open problems
Applications
Advanced topics
  • Category