Sihirli kare

3. dereceden bir sihirli karede; satır, sütun ve köşegen elemanlarının toplamı 15'tir.

Sihirli kare; n x n {\displaystyle nxn} boyutlu ( n > 2 {\displaystyle n>2} ), satır, sütun ve köşegenler boyunca elemanların toplamı sabit olan bir kare matristir. Bu sabite sihirli sabit denir.[1]

Matris, elemanlarını; değerlerini tekrarlamamak koşulu ile { 1 , 2 , . . . , n 2 } {\displaystyle \{1,2,...,n^{2}\}} kümesinden almaktadır.

Verilen n sayısına göre, sihirli sabit:

S = n ( n 2 + 1 ) 2 {\displaystyle S={\frac {n(n^{2}+1)}{2}}}

formülü ile hesaplanır. Örneğin n = 3 {\displaystyle n=3} için sihirli sabit: S = 3 ( 3 2 + 1 ) / 2 = 15 {\displaystyle S=3(3^{2}+1)/2=15} olacaktır. Yan tarafta 3. dereceden bir sihirli kare verilmiştir.

Tarihçe

  • Sihirli kareler M.Ö. 2200 yıllarından beri bilinmektedir.
  • Çin'de astroloji, fal bakma, felsefi yorumlama, doğa olayları ve insan davranışları dahil olmak üzere değişik çalışma alanlarında kullanılmıştır.
  • 9. ve 10. yüzyılda, sihirli karelerin matematiksel özelliklerinin, Arap dillerinin konuşulduğu yerlerde çoktan geliştirilmiş olduğu görülmüştür.
  • 15. yüzyıl boyunca Avrupalılar fal, simya ve astroloji ile sihirli kareleri ilişkilendirmeye çalışmışlardır.
  • 18. yüzyılda, Batı Afrika'da bu karelerin manevi bir önemi vardı. Bu kareler elbiseler, maskeler ve dinî sanat eserlerinin üzerine işlenmiştir.
  • 19. yüzyılın sonlarında matematikçiler sihirli kareleri olasılık ve analiz problemlerinde uygulamaya başlamışlardır.

Uygulama Alanları

Sihirli Kare Oluşturma

Sihirli Kare probleminin çözümüne ilişkin nasıl bir yaklaşım izlenmelidir? Bir bilgisayar programında, döngüler içinde bütün eleman değerlerinin denenmesi oldukça ilkel bir yaklaşımdır. Örneğin, deneme yanılma yöntemi ile değerlendirilecek durum sayısı, aşağıda gösterilen çizelgedeki gibi olur:

Karenin Derecesi (n) Değerlendirilecek durum sayısı (n2!)
3 3.6 x 105
4 2.1 x 1012
5 1.5 x 1025
6 3.7 x 1041
7 6.1 x 1062

n > 4 {\displaystyle n>4} için çözüm neredeyse imkânsızlaşır. Bu durumda, ne teknolojiye ne de programlama dillerine güvenmek çıkış yolu değildir. Öyleyse sezgisel yöntemlerin kullanılması kaçınılmazdır.

Problem genel olarak aşağıdaki durumlar için çözümler içerir:

  • Tek dereceli kareler (n=3, 5, 7, ...)
  • Çift dereceli kareler
  1. Tek-Çift: ikiye bölündüğünde tek sayı elde edilen kareler (n = 6, 10, 14, ...)
  2. Çift-Çift: ikiye bölündüğünde çift sayı elde edilen kareler (n = 4, 8, 12, ...)

Abiyev'in Sihirli Karesi

Prof. Dr. Asker Ali Abiyev 1996 yılında kendi adını verdiği algoritması için, "Sayılı Sihirli Karelerin Doğal Şifresi" adlı bir kitap hazırlayıp 1997 yılında Barselona'da "Batı Matematik Konferansı"nda ünlü matematikçilere sunmuş ve büyük ilgi toplamıştır. Abiyev'in algoritması ile, istenilen sayılardan (tam sayı, gerçel sayı, karmaşık sayı) istenilen dereceden (n -> oo) Sihirli Kare oluşturmak mümkündür.

Abiyev'in algoritmasına göre öncelikle her biri n elemanlı alfa, beta, gamma ve delta adında 4 tip aritmetik dizi tanımlanıp, her dizi için bir renk tayin edilir:

Dizi Artım (ortak fark) Renk
alfa +1  
beta +n  
gamma -1  
Delta -n  

Sonra sihirli kareye sayılar, her bir çerçeve için aşağıdaki algoritma ile yerleştirilir:

n karenin derecesini ve c karenin çerçeve numarasını göstermek üzere:

c=1 den n/2 ye kadar

  alfa dizisini (c-1)(n+1)+1 den, diğer dizileri (beta, gamma, delta) bir önceki dizinin son elemanındaki sayıdan başlat.

Örneğin: Sihirli Karenin 1. çerçevesine ait dizi elemanları şöyle olacaktır:

Alfa dizisi: 1, 2, ..., n Beta dizisi: n, 2n, 3n, ..., n2 Gamma dizisi: n2, n2-1, ..., n2-(n-1) Delta dizisi: n2-(n-1)-n, n2-(n-1)-2n, ..., 1

  Her bir dizinin elemanı Euler Devri ile (c'inci) çerçeveye yerleştir.

Bir sonraki iç çerçeve geç

Bu algoritma ile oluşturulmuş 7. ve 10. dereceden sihirli kareler şöyledir:


7inci dereceden sihirli kare

26 20 14 1 44 38 32
34 28 15 9 3 46 40
42 29 23 17 11 5 48
43 37 31 25 19 13 7
2 45 39 33 27 21 8
10 4 47 41 35 22 16
18 12 6 49 36 30 24

10uncu dereceden sihirli kare:

1 92 8 94 95 6 97 3 99 10
90 12 83 17 85 86 14 88 19 11
21 79 23 74 26 75 77 28 22 80
70 32 68 34 65 66 37 33 69 31
41 49 58 57 56 55 44 53 42 50
60 59 43 47 46 45 54 48 52 51
40 62 38 64 36 35 67 63 39 61
71 29 73 27 76 25 24 78 72 30
20 82 18 84 15 16 87 13 89 81
91 9 93 7 5 96 4 98 2 100


Abiyev'in Sihirli Karesi Sihirli Sabit'in dışında, diğer algoritmalarda bulunmayan, birçok sihirler (değişmezler, simetriler) içermektedir. Örneğin: denge. Bu algoritmayla yazılan bir Sihirli Kare'deki her bir eleman yerine (bulunduğu koordinatta) sayı değeri kadar aynı birimden kütle konduğunda, sistemin kütle merkezi karenin tam ortası olmaktadır. Bu yüzden, bu algoritma ile yazılan sihirli kareye, sayıların dengeli dağılımından dolayı, Dengeli Kare de denebilir.

Kaynakça

  1. ^ "Magic Square 5 Temmuz 2008 tarihinde Wayback Machine sitesinde arşivlendi." Onkar Singh, The Wolfram Demonstrations Project.

Ayrıca bakınız

Dış bağlantılar

  • Eric W. Weisstein, Magic Square (MathWorld)
  • Magic Squares at Convergence25 Haziran 2007 tarihinde Wayback Machine sitesinde arşivlendi.
  • W. S. Andrews, Magic Squares and Cubes. (New York: Dover, 1960), originally printed in 1917
  • John Lee Fults, Magic Squares. (La Salle, Illinois: Open Court, 1974).
  • Cliff Pickover, The Zen of Magic Squares, Circles, and Stars (Princeton, New Jersey: Princeton University Press)
  • Leonhard Euler, On magic squares (pdf)
  • Mark Farrar, Magic Squares ([1] 22 Ekim 2020 tarihinde Wayback Machine sitesinde arşivlendi.)
  • Asker Ali Abiyev, The Natural Code of Numbered Magic Squares (1996), <http://www1.gantep.edu.tr/~bingul/php/magic/ 28 Ağustos 2008 tarihinde Wayback Machine sitesinde arşivlendi.>
  • William H. Benson and Oswald Jacoby, "New Recreations with Magic Squares". (New York: Dover, 1976).
  • A 'perfect' magic square 21 Temmuz 2012 tarihinde Wayback Machine sitesinde arşivlendi.
  • Magic Squares of Order 4,5,6, and some theory 24 Mayıs 2012 tarihinde Wayback Machine sitesinde arşivlendi.
  • Evolving a Magic Square using Genetic Algorithms 3 Mayıs 2010 tarihinde Wayback Machine sitesinde arşivlendi.
  • Magic squares and magic cubes 25 Mayıs 2013 tarihinde Wayback Machine sitesinde arşivlendi.
Otorite kontrolü Bunu Vikiveri'de düzenleyin
  • BNF: cb11944380z (data)
  • GND: 4168511-8
  • LCCN: sh85079628
  • NDL: 01081048
  • NKC: ph214645
  • NLI: 987007543406305171
  • SUDOC: 027391345