Primitivele funcțiilor exponențiale

Acest articol face parte din seria de articole
Primitive ale diferitelor funcții
Tabel de integrale
Raționale
Logaritmice
Exponențiale
Iraționale
Trigonometrice
Hiperbolice
Invers trigonometrice
Hiperbolice reciproce

Următorul articol este o listă de integrale (primitive) de funcții exponențiale. Pentru o listă cu mai multe integrale, vezi tabel de integrale și lista integralelor.

e c x d x = 1 c e c x {\displaystyle \int e^{cx}\;dx={\frac {1}{c}}e^{cx}}
a c x d x = 1 c ln a a c x (pentru  a > 0 ,   a 1 ) {\displaystyle \int a^{cx}\;dx={\frac {1}{c\ln a}}a^{cx}\qquad {\mbox{(pentru }}a>0,{\mbox{ }}a\neq 1{\mbox{)}}}
x e c x d x = e c x c 2 ( c x 1 ) {\displaystyle \int xe^{cx}\;dx={\frac {e^{cx}}{c^{2}}}(cx-1)}
x 2 e c x d x = e c x ( x 2 c 2 x c 2 + 2 c 3 ) {\displaystyle \int x^{2}e^{cx}\;dx=e^{cx}\left({\frac {x^{2}}{c}}-{\frac {2x}{c^{2}}}+{\frac {2}{c^{3}}}\right)}
x n e c x d x = 1 c x n e c x n c x n 1 e c x d x {\displaystyle \int x^{n}e^{cx}\;dx={\frac {1}{c}}x^{n}e^{cx}-{\frac {n}{c}}\int x^{n-1}e^{cx}dx}
e c x d x x = ln | x | + i = 1 ( c x ) i i i ! {\displaystyle \int {\frac {e^{cx}\;dx}{x}}=\ln |x|+\sum _{i=1}^{\infty }{\frac {(cx)^{i}}{i\cdot i!}}}
e c x d x x n = 1 n 1 ( e c x x n 1 + c e c x x n 1 d x ) (pentru  n 1 ) {\displaystyle \int {\frac {e^{cx}\;dx}{x^{n}}}={\frac {1}{n-1}}\left(-{\frac {e^{cx}}{x^{n-1}}}+c\int {\frac {e^{cx}}{x^{n-1}}}\,dx\right)\qquad {\mbox{(pentru }}n\neq 1{\mbox{)}}}
e c x ln x d x = 1 c e c x ln | x | Ei ( c x ) {\displaystyle \int e^{cx}\ln x\;dx={\frac {1}{c}}e^{cx}\ln |x|-\operatorname {Ei} \,(cx)}
e c x sin b x d x = e c x c 2 + b 2 ( c sin b x b cos b x ) {\displaystyle \int e^{cx}\sin bx\;dx={\frac {e^{cx}}{c^{2}+b^{2}}}(c\sin bx-b\cos bx)}
e c x cos b x d x = e c x c 2 + b 2 ( c cos b x + b sin b x ) {\displaystyle \int e^{cx}\cos bx\;dx={\frac {e^{cx}}{c^{2}+b^{2}}}(c\cos bx+b\sin bx)}
e c x sin n x d x = e c x sin n 1 x c 2 + n 2 ( c sin x n cos x ) + n ( n 1 ) c 2 + n 2 e c x sin n 2 x d x {\displaystyle \int e^{cx}\sin ^{n}x\;dx={\frac {e^{cx}\sin ^{n-1}x}{c^{2}+n^{2}}}(c\sin x-n\cos x)+{\frac {n(n-1)}{c^{2}+n^{2}}}\int e^{cx}\sin ^{n-2}x\;dx}
e c x cos n x d x = e c x cos n 1 x c 2 + n 2 ( c cos x + n sin x ) + n ( n 1 ) c 2 + n 2 e c x cos n 2 x d x {\displaystyle \int e^{cx}\cos ^{n}x\;dx={\frac {e^{cx}\cos ^{n-1}x}{c^{2}+n^{2}}}(c\cos x+n\sin x)+{\frac {n(n-1)}{c^{2}+n^{2}}}\int e^{cx}\cos ^{n-2}x\;dx}
x e c x 2 d x = 1 2 c e c x 2 {\displaystyle \int xe^{cx^{2}}\;dx={\frac {1}{2c}}\;e^{cx^{2}}}
1 σ 2 π e ( x μ ) 2 / 2 σ 2 d x = 1 2 σ ( 1 + erf x μ σ 2 ) {\displaystyle \int {1 \over \sigma {\sqrt {2\pi }}}\,e^{-{(x-\mu )^{2}/2\sigma ^{2}}}\;dx={\frac {1}{2\sigma }}(1+{\mbox{erf}}\,{\frac {x-\mu }{\sigma {\sqrt {2}}}})}
e x 2 d x = e x 2 ( j = 0 n 1 c 2 j 1 x 2 j + 1 ) + ( 2 n 1 ) c 2 n 2 e x 2 x 2 n d x pentru  n > 0 , {\displaystyle \int e^{x^{2}}\,dx=e^{x^{2}}\left(\sum _{j=0}^{n-1}c_{2j}\,{\frac {1}{x^{2j+1}}}\right)+(2n-1)c_{2n-2}\int {\frac {e^{x^{2}}}{x^{2n}}}\;dx\quad {\mbox{pentru }}n>0,}
unde c 2 j = 1 3 5 ( 2 j 1 ) 2 j + 1 = 2 j ! j ! 2 2 j + 1   . {\displaystyle c_{2j}={\frac {1\cdot 3\cdot 5\cdots (2j-1)}{2^{j+1}}}={\frac {2j\,!}{j!\,2^{2j+1}}}\ .}
e a x 2 d x = π a {\displaystyle \int _{-\infty }^{\infty }e^{-ax^{2}}\,dx={\sqrt {\pi \over a}}} (Integrala gaussiană)
x e a ( x b ) 2 d x = b π a {\displaystyle \int _{-\infty }^{\infty }xe^{-a(x-b)^{2}}\,dx=b{\sqrt {\pi \over a}}}
x 2 e a x 2 d x = 1 2 π a 3 {\displaystyle \int _{-\infty }^{\infty }x^{2}e^{-ax^{2}}\,dx={\frac {1}{2}}{\sqrt {\pi \over a^{3}}}}
0 x 2 n e x 2 / a 2 d x = π ( 2 n ) ! n ! ( a 2 ) 2 n + 1 {\displaystyle \int _{0}^{\infty }x^{2n}e^{-{x^{2}}/{a^{2}}}\,dx={\sqrt {\pi }}{(2n)! \over {n!}}{\left({\frac {a}{2}}\right)}^{2n+1}}
e x 2 / a 2 cos b x d x = a π ( sin a 2 b 2 4 + cos a 2 b 2 4 ) {\displaystyle \int _{-\infty }^{\infty }e^{-{x^{2}}/{a^{2}}}\cos bx\,dx=a{\sqrt {\pi }}(\sin {a^{2}b^{2} \over 4}+\cos {a^{2}b^{2} \over 4})}
0 2 π e x cos θ d θ = 2 π I 0 ( x ) {\displaystyle \int _{0}^{2\pi }e^{x\cos \theta }d\theta =2\pi I_{0}(x)} ( I 0 {\displaystyle I_{0}} este funcția Bessel de speța I modificată)
0 2 π e x cos θ + y sin θ d θ = 2 π I 0 ( x 2 + y 2 ) {\displaystyle \int _{0}^{2\pi }e^{x\cos \theta +y\sin \theta }d\theta =2\pi I_{0}\left({\sqrt {x^{2}+y^{2}}}\right)}
0 x a e b x d x = a ! b a + 1 {\displaystyle \int _{0}^{\infty }x^{a}e^{-bx}dx={\frac {a!}{b^{a+1}}}}