Formula lui Wallis

Formula lui Wallis sau produsul lui Wallis este un produs infinit:

n = 1 ( 2 n 2 n 1 2 n 2 n + 1 ) = 2 1 2 3 4 3 4 5 6 5 6 7 8 7 8 9 = π 2 . {\displaystyle \prod _{n=1}^{\infty }\left({\frac {2n}{2n-1}}\cdot {\frac {2n}{2n+1}}\right)={\frac {2}{1}}\cdot {\frac {2}{3}}\cdot {\frac {4}{3}}\cdot {\frac {4}{5}}\cdot {\frac {6}{5}}\cdot {\frac {6}{7}}\cdot {\frac {8}{7}}\cdot {\frac {8}{9}}\cdots ={\frac {\pi }{2}}.}

A fost descoperit de John Wallis în 1655.

Demonstrație utilizând produsul lui Euler pentru sinus

Se utilizează formula lui Euler:

sin ( π z ) = π z n = 1 ( 1 2 n 2 ) . {\displaystyle \sin(\pi z)=\pi z\prod _{n=1}^{\infty }\left(1-{\frac {^{2}}{n^{2}}}\right).}

Aceasta se scrie:

sin x x = n = 1 ( 1 x 2 n 2 π 2 ) {\displaystyle {\frac {\sin x}{x}}=\prod _{n=1}^{\infty }\left(1-{\frac {x^{2}}{n^{2}\pi ^{2}}}\right)}

Fie x = π2:

2 π = n = 1 ( 1 1 4 n 2 ) π 2 = n = 1 ( 4 n 2 4 n 2 1 ) = n = 1 ( 2 n 2 n 1 2 n 2 n + 1 ) = 2 1 2 3 4 3 4 5 6 5 6 7 {\displaystyle {\begin{aligned}\Rightarrow {\frac {2}{\pi }}&=\prod _{n=1}^{\infty }\left(1-{\frac {1}{4n^{2}}}\right)\\\Rightarrow {\frac {\pi }{2}}&=\prod _{n=1}^{\infty }\left({\frac {4n^{2}}{4n^{2}-1}}\right)\\&=\prod _{n=1}^{\infty }\left({\frac {2n}{2n-1}}\cdot {\frac {2n}{2n+1}}\right)={\frac {2}{1}}\cdot {\frac {2}{3}}\cdot {\frac {4}{3}}\cdot {\frac {4}{5}}\cdot {\frac {6}{5}}\cdot {\frac {6}{7}}\cdots \end{aligned}}}

Demonstrație prin metoda integralelor

Fie:

I ( n ) = 0 π sin n x d x {\displaystyle I(n)=\int _{0}^{\pi }\sin ^{n}xdx}

(o formă a integralei lui Wallis). Integrând prin părți:

u = sin n 1 x d u = ( n 1 ) sin n 2 x cos x d x d v = sin x d x v = cos x {\displaystyle {\begin{aligned}u&=\sin ^{n-1}x\\\Rightarrow du&=(n-1)\sin ^{n-2}x\cos xdx\\dv&=\sin xdx\\\Rightarrow v&=-\cos x\end{aligned}}}
I ( n ) = 0 π sin n x d x = 0 π u d v = u v | x = 0 x = π 0 π v d u = sin n 1 x cos x | x = 0 x = π 0 π cos x ( n 1 ) sin n 2 x cos x d x = 0 ( n 1 ) 0 π cos 2 x sin n 2 x d x , n > 1 = ( n 1 ) 0 π ( 1 sin 2 x ) sin n 2 x d x = ( n 1 ) 0 π sin n 2 x d x ( n 1 ) 0 π sin n x d x = ( n 1 ) I ( n 2 ) ( n 1 ) I ( n ) = n 1 n I ( n 2 ) I ( n ) I ( n 2 ) = n 1 n I ( 2 n 1 ) I ( 2 n + 1 ) = 2 n + 1 2 n {\displaystyle {\begin{aligned}\Rightarrow I(n)&=\int _{0}^{\pi }\sin ^{n}xdx=\int _{0}^{\pi }udv=uv|_{x=0}^{x=\pi }-\int _{0}^{\pi }vdu\\{}&=-\sin ^{n-1}x\cos x|_{x=0}^{x=\pi }-\int _{0}^{\pi }-\cos x(n-1)\sin ^{n-2}x\cos xdx\\{}&=0-(n-1)\int _{0}^{\pi }-\cos ^{2}x\sin ^{n-2}xdx,n>1\\{}&=(n-1)\int _{0}^{\pi }(1-\sin ^{2}x)\sin ^{n-2}xdx\\{}&=(n-1)\int _{0}^{\pi }\sin ^{n-2}xdx-(n-1)\int _{0}^{\pi }\sin ^{n}xdx\\{}&=(n-1)I(n-2)-(n-1)I(n)\\{}&={\frac {n-1}{n}}I(n-2)\\\Rightarrow {\frac {I(n)}{I(n-2)}}&={\frac {n-1}{n}}\\\Rightarrow {\frac {I(2n-1)}{I(2n+1)}}&={\frac {2n+1}{2n}}\end{aligned}}}

Acest rezultat va fi utilizat mai jos:

I ( 0 ) = 0 π d x = x | 0 π = π I ( 1 ) = 0 π sin x d x = cos x | 0 π = ( cos π ) ( cos 0 ) = ( 1 ) ( 1 ) = 2 I ( 2 n ) = 0 π sin 2 n x d x = 2 n 1 2 n I ( 2 n 2 ) = 2 n 1 2 n 2 n 3 2 n 2 I ( 2 n 4 ) {\displaystyle {\begin{aligned}I(0)&=\int _{0}^{\pi }dx=x|_{0}^{\pi }=\pi \\I(1)&=\int _{0}^{\pi }\sin xdx=-\cos x|_{0}^{\pi }=(-\cos \pi )-(-\cos 0)=-(-1)-(-1)=2\\I(2n)&=\int _{0}^{\pi }\sin ^{2n}xdx={\frac {2n-1}{2n}}I(2n-2)={\frac {2n-1}{2n}}\cdot {\frac {2n-3}{2n-2}}I(2n-4)\end{aligned}}}

Repetând procedeul,

= 2 n 1 2 n 2 n 3 2 n 2 2 n 5 2 n 4 5 6 3 4 1 2 I ( 0 ) = π k = 1 n 2 k 1 2 k {\displaystyle ={\frac {2n-1}{2n}}\cdot {\frac {2n-3}{2n-2}}\cdot {\frac {2n-5}{2n-4}}\cdot \cdots \cdot {\frac {5}{6}}\cdot {\frac {3}{4}}\cdot {\frac {1}{2}}I(0)=\pi \prod _{k=1}^{n}{\frac {2k-1}{2k}}}
I ( 2 n + 1 ) = 0 π sin 2 n + 1 x d x = 2 n 2 n + 1 I ( 2 n 1 ) = 2 n 2 n + 1 2 n 2 2 n 1 I ( 2 n 3 ) {\displaystyle I(2n+1)=\int _{0}^{\pi }\sin ^{2n+1}xdx={\frac {2n}{2n+1}}I(2n-1)={\frac {2n}{2n+1}}\cdot {\frac {2n-2}{2n-1}}I(2n-3)}

Reinterând procesul,

= 2 n 2 n + 1 2 n 2 2 n 1 2 n 4 2 n 3 6 7 4 5 2 3 I ( 1 ) = 2 k = 1 n 2 k 2 k + 1 {\displaystyle ={\frac {2n}{2n+1}}\cdot {\frac {2n-2}{2n-1}}\cdot {\frac {2n-4}{2n-3}}\cdot \cdots \cdot {\frac {6}{7}}\cdot {\frac {4}{5}}\cdot {\frac {2}{3}}I(1)=2\prod _{k=1}^{n}{\frac {2k}{2k+1}}}
sin 2 n + 1 x sin 2 n x sin 2 n 1 x , 0 x π {\displaystyle \sin ^{2n+1}x\leq \sin ^{2n}x\leq \sin ^{2n-1}x,0\leq x\leq \pi }
I ( 2 n + 1 ) I ( 2 n ) I ( 2 n 1 ) {\displaystyle \Rightarrow I(2n+1)\leq I(2n)\leq I(2n-1)}
1 I ( 2 n ) I ( 2 n + 1 ) I ( 2 n 1 ) I ( 2 n + 1 ) = 2 n + 1 2 n {\displaystyle \Rightarrow 1\leq {\frac {I(2n)}{I(2n+1)}}\leq {\frac {I(2n-1)}{I(2n+1)}}={\frac {2n+1}{2n}}} , din rezultatele de mai sus.

Conform teoremei cleștelui,

lim n I ( 2 n ) I ( 2 n + 1 ) = 1 {\displaystyle \Rightarrow \lim _{n\rightarrow \infty }{\frac {I(2n)}{I(2n+1)}}=1}
lim n I ( 2 n ) I ( 2 n + 1 ) = π 2 lim n k = 1 n ( 2 k 1 2 k 2 k + 1 2 k ) = 1 {\displaystyle \lim _{n\rightarrow \infty }{\frac {I(2n)}{I(2n+1)}}={\frac {\pi }{2}}\lim _{n\rightarrow \infty }\prod _{k=1}^{n}\left({\frac {2k-1}{2k}}\cdot {\frac {2k+1}{2k}}\right)=1}
π 2 = k = 1 ( 2 k 2 k 1 2 k 2 k + 1 ) = 2 1 2 3 4 3 4 5 6 5 6 7 {\displaystyle \Rightarrow {\frac {\pi }{2}}=\prod _{k=1}^{\infty }\left({\frac {2k}{2k-1}}\cdot {\frac {2k}{2k+1}}\right)={\frac {2}{1}}\cdot {\frac {2}{3}}\cdot {\frac {4}{3}}\cdot {\frac {4}{5}}\cdot {\frac {6}{5}}\cdot {\frac {6}{7}}\cdot \cdots }

Legături externe

  • en Wolfram MathWorld