Anexo:Integrales de funciones trigonométricas

La siguiente es una lista de integrales de funciones trigonométricas y su correspondiente simplificación. La letra c representa una constante numérica.

Integrales que contienen solamente sen

sen c x d x = 1 c cos c x {\displaystyle \int \operatorname {sen} cx\;dx=-{\frac {1}{c}}\cos cx}
sen n c x d x = sen n 1 c x cos c x n c + n 1 n sen n 2 c x d x (para  n > 0 ) {\displaystyle \int \operatorname {sen} ^{n}cx\;dx=-{\frac {\operatorname {sen} ^{n-1}cx\cos cx}{nc}}+{\frac {n-1}{n}}\int \operatorname {sen} ^{n-2}cx\;dx\qquad {\mbox{(para }}n>0{\mbox{)}}}
x sen c x d x = sen c x c 2 x cos c x c {\displaystyle \int x\operatorname {sen} cx\;dx={\frac {\operatorname {sen} cx}{c^{2}}}-{\frac {x\cos cx}{c}}}
x n sen c x d x = x n c cos c x + n c x n 1 cos c x d x (para  n > 0 ) {\displaystyle \int x^{n}\operatorname {sen} cx\;dx=-{\frac {x^{n}}{c}}\cos cx+{\frac {n}{c}}\int x^{n-1}\cos cx\;dx\qquad {\mbox{(para }}n>0{\mbox{)}}}
sen c x x d x = i = 0 ( 1 ) i ( c x ) 2 i + 1 ( 2 i + 1 ) ( 2 i + 1 ) ! {\displaystyle \int {\frac {\operatorname {sen} cx}{x}}dx=\sum _{i=0}^{\infty }(-1)^{i}{\frac {(cx)^{2i+1}}{(2i+1)\cdot (2i+1)!}}}
sen c x x n d x = sen c x ( n 1 ) x n 1 + c n 1 cos c x x n 1 d x {\displaystyle \int {\frac {\operatorname {sen} cx}{x^{n}}}dx=-{\frac {\operatorname {sen} cx}{(n-1)x^{n-1}}}+{\frac {c}{n-1}}\int {\frac {\cos cx}{x^{n-1}}}dx}
d x sen c x = 1 c ln | tan c x 2 | {\displaystyle \int {\frac {dx}{\operatorname {sen} cx}}={\frac {1}{c}}\ln \left|\tan {\frac {cx}{2}}\right|}
d x sen n c x = cos c x c ( 1 n ) sen n 1 c x + n 2 n 1 d x sen n 2 c x (para  n > 1 ) {\displaystyle \int {\frac {dx}{\operatorname {sen} ^{n}cx}}={\frac {\cos cx}{c(1-n)\operatorname {sen} ^{n-1}cx}}+{\frac {n-2}{n-1}}\int {\frac {dx}{\operatorname {sen} ^{n-2}cx}}\qquad {\mbox{(para }}n>1{\mbox{)}}}
d x 1 ± sen c x = 1 c tan ( c x 2 π 4 ) {\displaystyle \int {\frac {dx}{1\pm \operatorname {sen} cx}}={\frac {1}{c}}\tan \left({\frac {cx}{2}}\mp {\frac {\pi }{4}}\right)}
x d x 1 sen c x = x c cot ( π 4 c x 2 ) + 2 c 2 ln | sen ( π 4 c x 2 ) | {\displaystyle \int {\frac {x\;dx}{1-\operatorname {sen} cx}}={\frac {x}{c}}\cot \left({\frac {\pi }{4}}-{\frac {cx}{2}}\right)+{\frac {2}{c^{2}}}\ln \left|\operatorname {sen} \left({\frac {\pi }{4}}-{\frac {cx}{2}}\right)\right|}
sen c x d x 1 ± sen c x = ± x + 1 c tan ( π 4 c x 2 ) {\displaystyle \int {\frac {\operatorname {sen} cx\;dx}{1\pm \operatorname {sen} cx}}=\pm x+{\frac {1}{c}}\tan \left({\frac {\pi }{4}}\mp {\frac {cx}{2}}\right)}
sen c 1 x sen c 2 x d x = sen ( c 1 c 2 ) x 2 ( c 1 c 2 ) sen ( c 1 + c 2 ) x 2 ( c 1 + c 2 ) (para  | c 1 | | c 2 | ) {\displaystyle \int \operatorname {sen} c_{1}x\operatorname {sen} c_{2}x\;dx={\frac {\operatorname {sen}(c_{1}-c_{2})x}{2(c_{1}-c_{2})}}-{\frac {\operatorname {sen}(c_{1}+c_{2})x}{2(c_{1}+c_{2})}}\qquad {\mbox{(para }}|c_{1}|\neq |c_{2}|{\mbox{)}}}
s e n ( a x 2 + b x + c ) d x = { a π 2 cos ( b 2 4 a c 4 a ) S ( 2 a x + b 2 a π ) + a π 2 sen ( b 2 4 a c 4 a ) C ( 2 a x + b 2 a π ) p a r a b 2 4 a c > 0 a π 2 cos ( b 2 4 a c 4 a ) S ( 2 a x + b 2 a π ) a π 2 sen ( b 2 4 a c 4 a ) C ( 2 a x + b 2 a π ) p a r a b 2 4 a c < 0 y a = 0 {\displaystyle \int {{sen}{\mathrm {(} }{ax}^{2}\mathrm {+} {bx}\mathrm {+} {c}{\mathrm {)} }{dx}}\mathrm {=} \left\{{\begin{aligned}&{{\sqrt {a}}{\sqrt {\frac {\mathit {\pi }}{2}}}\cos \left({\frac {{b}^{2}\mathrm {-} {4}{ac}}{4a}}\right){S}\left({\frac {{2}{ax}\mathrm {+} {b}}{\sqrt {{2}{a}{\mathit {\pi }}}}}\right)\mathrm {+} {\sqrt {a}}{\sqrt {\frac {\mathit {\pi }}{2}}}\operatorname {sen} \left({\frac {{b}^{2}\mathrm {-} {4}{ac}}{4a}}\right){C}\left({\frac {{2}{ax}\mathrm {+} {b}}{\sqrt {{2}{a}{\mathit {\pi }}}}}\right)\;{para}\;{b}^{2}\mathrm {-} {4}{ac}\;{\mathrm {>} }\;{0}}\\&{{\sqrt {a}}{\sqrt {\frac {\mathit {\pi }}{2}}}\cos \left({\frac {{b}^{2}\mathrm {-} {4}{ac}}{4a}}\right){S}\left({\frac {{2}{ax}\mathrm {+} {b}}{\sqrt {{2}{a}{\mathit {\pi }}}}}\right)\mathrm {-} {\sqrt {a}}{\sqrt {\frac {\mathit {\pi }}{2}}}\operatorname {sen} \left({\frac {{b}^{2}\mathrm {-} {4}{ac}}{4a}}\right){C}\left({\frac {{2}{ax}\mathrm {+} {b}}{\sqrt {{2}{a}{\mathit {\pi }}}}}\right)\;{para}\;{b}^{2}\mathrm {-} {4}{ac}\;{\mathrm {<} }\;{0}}\end{aligned}}\right.\;{y}\;{a}\diagup \!\!\!\!{\mathrm {=} }{0}} [1]
Sean S y C integrales de Fresnel

Integrales que contienen solamente cos

cos c x d x = 1 c sen c x {\displaystyle \int \cos cx\;dx={\frac {1}{c}}\operatorname {sen} cx}
cos n c x d x = cos n 1 c x sen c x n c + n 1 n cos n 2 c x d x (para  n > 0 ) {\displaystyle \int \cos ^{n}cx\;dx={\frac {\cos ^{n-1}cx\operatorname {sen} cx}{nc}}+{\frac {n-1}{n}}\int \cos ^{n-2}cx\;dx\qquad {\mbox{(para }}n>0{\mbox{)}}}
x cos c x d x = cos c x c 2 + x sen c x c {\displaystyle \int x\cos cx\;dx={\frac {\cos cx}{c^{2}}}+{\frac {x\operatorname {sen} cx}{c}}}
x n cos c x d x = x n sen c x c n c x n 1 sen c x d x {\displaystyle \int x^{n}\cos cx\;dx={\frac {x^{n}\operatorname {sen} cx}{c}}-{\frac {n}{c}}\int x^{n-1}\operatorname {sen} cx\;dx}
cos c x x d x = ln | c x | + i = 1 ( 1 ) i ( c x ) 2 i 2 i ( 2 i ) ! {\displaystyle \int {\frac {\cos cx}{x}}dx=\ln |cx|+\sum _{i=1}^{\infty }(-1)^{i}{\frac {(cx)^{2i}}{2i\cdot (2i)!}}}
cos c x x n d x = cos c x ( n 1 ) x n 1 c n 1 sen c x x n 1 d x (para  n 1 ) {\displaystyle \int {\frac {\cos cx}{x^{n}}}dx=-{\frac {\cos cx}{(n-1)x^{n-1}}}-{\frac {c}{n-1}}\int {\frac {\operatorname {sen} cx}{x^{n-1}}}dx\qquad {\mbox{(para }}n\neq 1{\mbox{)}}}
d x cos c x = 1 c ln | tan ( c x 2 + π 4 ) | {\displaystyle \int {\frac {dx}{\cos cx}}={\frac {1}{c}}\ln \left|\tan \left({\frac {cx}{2}}+{\frac {\pi }{4}}\right)\right|}
d x cos n c x = sen c x c ( n 1 ) c o s n 1 c x + n 2 n 1 d x cos n 2 c x (para  n > 1 ) {\displaystyle \int {\frac {dx}{\cos ^{n}cx}}={\frac {\operatorname {sen} cx}{c(n-1)cos^{n-1}cx}}+{\frac {n-2}{n-1}}\int {\frac {dx}{\cos ^{n-2}cx}}\qquad {\mbox{(para }}n>1{\mbox{)}}}
d x 1 + cos c x = 1 c tan c x 2 {\displaystyle \int {\frac {dx}{1+\cos cx}}={\frac {1}{c}}\tan {\frac {cx}{2}}}
d x 1 cos c x = 1 c cot c x 2 {\displaystyle \int {\frac {dx}{1-\cos cx}}=-{\frac {1}{c}}\cot {\frac {cx}{2}}}
x d x 1 + cos c x = x c tan c x 2 + 2 c 2 ln | cos c x 2 | {\displaystyle \int {\frac {x\;dx}{1+\cos cx}}={\frac {x}{c}}\tan {cx}{2}+{\frac {2}{c^{2}}}\ln \left|\cos {\frac {cx}{2}}\right|}
x d x 1 cos c x = x x cot c x 2 + 2 c 2 ln | sen c x 2 | {\displaystyle \int {\frac {x\;dx}{1-\cos cx}}=-{\frac {x}{x}}\cot {cx}{2}+{\frac {2}{c^{2}}}\ln \left|\operatorname {sen} {\frac {cx}{2}}\right|}
cos c x d x 1 + cos c x = x 1 c tan c x 2 {\displaystyle \int {\frac {\cos cx\;dx}{1+\cos cx}}=x-{\frac {1}{c}}\tan {\frac {cx}{2}}}
cos c x d x 1 cos c x = x 1 c cot c x 2 {\displaystyle \int {\frac {\cos cx\;dx}{1-\cos cx}}=-x-{\frac {1}{c}}\cot {\frac {cx}{2}}}
cos c 1 x cos c 2 x d x = sen ( c 1 c 2 ) x 2 ( c 1 c 2 ) + sen ( c 1 + c 2 ) x 2 ( c 1 + c 2 ) (para  | c 1 | | c 2 | ) {\displaystyle \int \cos c_{1}x\cos c_{2}x\;dx={\frac {\operatorname {sen}(c_{1}-c_{2})x}{2(c_{1}-c_{2})}}+{\frac {\operatorname {sen}(c_{1}+c_{2})x}{2(c_{1}+c_{2})}}\qquad {\mbox{(para }}|c_{1}|\neq |c_{2}|{\mbox{)}}}

Integrales que contienen solamente tan

tan c x d x = 1 c ln | cos c x | {\displaystyle \int \tan cx\;dx=-{\frac {1}{c}}\ln |\cos cx|}
tan n c x d x = 1 c ( n 1 ) tan n 1 c x tan n 2 c x d x (para  n 1 ) {\displaystyle \int \tan ^{n}cx\;dx={\frac {1}{c(n-1)}}\tan ^{n-1}cx-\int \tan ^{n-2}cx\;dx\qquad {\mbox{(para }}n\neq 1{\mbox{)}}}
d x tan c x + 1 = x 2 + 1 2 c ln | sen c x + cos c x | {\displaystyle \int {\frac {dx}{\tan cx+1}}={\frac {x}{2}}+{\frac {1}{2c}}\ln |\operatorname {sen} cx+\cos cx|}
d x tan c x 1 = x 2 + 1 2 c ln | sen c x cos c x | {\displaystyle \int {\frac {dx}{\tan cx-1}}=-{\frac {x}{2}}+{\frac {1}{2c}}\ln |\operatorname {sen} cx-\cos cx|}
tan c x d x tan c x + 1 = x 2 1 2 c ln | sen c x + cos c x | {\displaystyle \int {\frac {\tan cx\;dx}{\tan cx+1}}={\frac {x}{2}}-{\frac {1}{2c}}\ln |\operatorname {sen} cx+\cos cx|}
tan c x d x tan c x 1 = x 2 + 1 2 c ln | sen c x cos c x | {\displaystyle \int {\frac {\tan cx\;dx}{\tan cx-1}}={\frac {x}{2}}+{\frac {1}{2c}}\ln |\operatorname {sen} cx-\cos cx|}

Integrales que contienen solamente cot

cot c x d x = 1 c ln | sen c x | {\displaystyle \int \cot cx\;dx={\frac {1}{c}}\ln |\operatorname {sen} cx|}
cot n c x d x = 1 c ( n 1 ) cot n 1 c x cot n 2 c x d x (para ) n 1 ) {\displaystyle \int \cot ^{n}cx\;dx=-{\frac {1}{c(n-1)}}\cot ^{n-1}cx-\int \cot ^{n-2}cx\;dx\qquad {\mbox{(para )}}n\neq 1{\mbox{)}}}
d x 1 + cot c x = tan c x d x tan c x + 1 {\displaystyle \int {\frac {dx}{1+\cot cx}}=\int {\frac {\tan cx\;dx}{\tan cx+1}}}
d x 1 cot c x = tan c x d x tan c x 1 {\displaystyle \int {\frac {dx}{1-\cot cx}}=\int {\frac {\tan cx\;dx}{\tan cx-1}}}

Integrales que contienen sen y cos

d x cos c x ± sen c x = 1 c 2 ln | tan ( c x 2 ± π 8 ) | {\displaystyle \int {\frac {dx}{\cos cx\pm \operatorname {sen} cx}}={\frac {1}{c{\sqrt {2}}}}\ln \left|\tan \left({\frac {cx}{2}}\pm {\frac {\pi }{8}}\right)\right|}
d x ( cos c x ± sen c x ) 2 = 1 2 c tan ( c x π 4 ) {\displaystyle \int {\frac {dx}{(\cos cx\pm \operatorname {sen} cx)^{2}}}={\frac {1}{2c}}\tan \left(cx\mp {\frac {\pi }{4}}\right)}
cos c x d x cos c x + sen c x = x 2 + 1 2 c ln | sen c x + cos c x | {\displaystyle \int {\frac {\cos cx\;dx}{\cos cx+\operatorname {sen} cx}}={\frac {x}{2}}+{\frac {1}{2c}}\ln \left|\operatorname {sen} cx+\cos cx\right|}
cos c x d x cos c x sen c x = x 2 1 2 c ln | sen c x cos c x | {\displaystyle \int {\frac {\cos cx\;dx}{\cos cx-\operatorname {sen} cx}}={\frac {x}{2}}-{\frac {1}{2c}}\ln \left|\operatorname {sen} cx-\cos cx\right|}
sen c x d x cos c x + sen c x = x 2 1 2 c ln | sen c x + cos c x | {\displaystyle \int {\frac {\operatorname {sen} cx\;dx}{\cos cx+\operatorname {sen} cx}}={\frac {x}{2}}-{\frac {1}{2c}}\ln \left|\operatorname {sen} cx+\cos cx\right|}
sen c x d x cos c x sen c x = x 2 1 2 c ln | sen c x cos c x | {\displaystyle \int {\frac {\operatorname {sen} cx\;dx}{\cos cx-\operatorname {sen} cx}}=-{\frac {x}{2}}-{\frac {1}{2c}}\ln \left|\operatorname {sen} cx-\cos cx\right|}
cos c x d x sen c x ( 1 + cos c x ) = 1 4 c tan 2 c x 2 + 1 2 c ln | tan c x 2 | {\displaystyle \int {\frac {\cos cx\;dx}{\operatorname {sen} cx(1+\cos cx)}}=-{\frac {1}{4c}}\tan ^{2}{\frac {cx}{2}}+{\frac {1}{2c}}\ln \left|\tan {\frac {cx}{2}}\right|}
cos c x d x sen c x ( 1 + cos c x ) = 1 4 c cot 2 c x 2 1 2 c ln | tan c x 2 | {\displaystyle \int {\frac {\cos cx\;dx}{\operatorname {sen} cx(1+-\cos cx)}}=-{\frac {1}{4c}}\cot ^{2}{\frac {cx}{2}}-{\frac {1}{2c}}\ln \left|\tan {\frac {cx}{2}}\right|}
sen c x d x cos c x ( 1 + sen c x ) = 1 4 c cot 2 ( c x 2 + π 4 ) + 1 2 c ln | tan ( c x 2 + π 4 ) | {\displaystyle \int {\frac {\operatorname {sen} cx\;dx}{\cos cx(1+\operatorname {sen} cx)}}={\frac {1}{4c}}\cot ^{2}\left({\frac {cx}{2}}+{\frac {\pi }{4}}\right)+{\frac {1}{2c}}\ln \left|\tan \left({\frac {cx}{2}}+{\frac {\pi }{4}}\right)\right|}
sen c x d x cos c x ( 1 sen c x ) = 1 4 c tan 2 ( c x 2 + π 4 ) 1 2 c ln | tan ( c x 2 + π 4 ) | {\displaystyle \int {\frac {\operatorname {sen} cx\;dx}{\cos cx(1-\operatorname {sen} cx)}}={\frac {1}{4c}}\tan ^{2}\left({\frac {cx}{2}}+{\frac {\pi }{4}}\right)-{\frac {1}{2c}}\ln \left|\tan \left({\frac {cx}{2}}+{\frac {\pi }{4}}\right)\right|}
sen c x cos c x d x = 1 2 c sen 2 c x {\displaystyle \int \operatorname {sen} cx\cos cx\;dx={\frac {1}{2c}}\operatorname {sen} ^{2}cx}
sen c 1 x cos c 2 x d x = cos ( c 1 + c 2 ) x 2 ( c 1 + c 2 ) cos ( c 1 c 2 ) x 2 ( c 1 c 2 ) (para  | c 1 | | c 2 | ) {\displaystyle \int \operatorname {sen} c_{1}x\cos c_{2}x\;dx=-{\frac {\cos(c_{1}+c_{2})x}{2(c_{1}+c_{2})}}-{\frac {\cos(c_{1}-c_{2})x}{2(c_{1}-c_{2})}}\qquad {\mbox{(para }}|c_{1}|\neq |c_{2}|{\mbox{)}}}
sen n c x cos c x d x = 1 c ( n + 1 ) sen n + 1 c x (para  n 1 ) {\displaystyle \int \operatorname {sen} ^{n}cx\cos cx\;dx={\frac {1}{c(n+1)}}\operatorname {sen} ^{n+1}cx\qquad {\mbox{(para }}n\neq 1{\mbox{)}}}
sen c x cos n c x d x = 1 c ( n + 1 ) cos n + 1 c x (para  n 1 ) {\displaystyle \int \operatorname {sen} cx\cos ^{n}cx\;dx=-{\frac {1}{c(n+1)}}\cos ^{n+1}cx\qquad {\mbox{(para }}n\neq 1{\mbox{)}}}
sen n c x cos m c x d x = sen n 1 c x cos m + 1 c x c ( n + m ) + n 1 n + m sen n 2 c x cos m c x d x (para  m , n > 0 ) {\displaystyle \int \operatorname {sen} ^{n}cx\cos ^{m}cx\;dx=-{\frac {\operatorname {sen} ^{n-1}cx\cos ^{m+1}cx}{c(n+m)}}+{\frac {n-1}{n+m}}\int \operatorname {sen} ^{n-2}cx\cos ^{m}cx\;dx\qquad {\mbox{(para }}m,n>0{\mbox{)}}}
también: sen n c x cos m c x d x = sen n + 1 c x cos m 1 c x c ( n + m ) + m 1 n + m sen n c x cos m 2 c x d x (para  m , n > 0 ) {\displaystyle \int \operatorname {sen} ^{n}cx\cos ^{m}cx\;dx={\frac {\operatorname {sen} ^{n+1}cx\cos ^{m-1}cx}{c(n+m)}}+{\frac {m-1}{n+m}}\int \operatorname {sen} ^{n}cx\cos ^{m-2}cx\;dx\qquad {\mbox{(para }}m,n>0{\mbox{)}}}
d x sen c x cos c x = 1 c ln | tan c x | {\displaystyle \int {\frac {dx}{\operatorname {sen} cx\cos cx}}={\frac {1}{c}}\ln \left|\tan cx\right|}
d x sen c x cos n c x = 1 c ( n 1 ) cos n 1 c x + d x sen c x cos n 2 c x (para  n 1 ) {\displaystyle \int {\frac {dx}{\operatorname {sen} cx\cos ^{n}cx}}={\frac {1}{c(n-1)\cos ^{n-1}cx}}+\int {\frac {dx}{\operatorname {sen} cx\cos ^{n-2}cx}}\qquad {\mbox{(para }}n\neq 1{\mbox{)}}}
d x sen n c x cos c x = 1 c ( n 1 ) sen n 1 c x + d x sen n 2 c x cos c x (para  n 1 ) {\displaystyle \int {\frac {dx}{\operatorname {sen} ^{n}cx\cos cx}}=-{\frac {1}{c(n-1)\operatorname {sen} ^{n-1}cx}}+\int {\frac {dx}{\operatorname {sen} ^{n-2}cx\cos cx}}\qquad {\mbox{(para }}n\neq 1{\mbox{)}}}
sen c x d x cos n c x = 1 c ( n 1 ) cos n 1 c x (para  n 1 ) {\displaystyle \int {\frac {\operatorname {sen} cx\;dx}{\cos ^{n}cx}}={\frac {1}{c(n-1)\cos ^{n-1}cx}}\qquad {\mbox{(para }}n\neq 1{\mbox{)}}}
sen 2 c x d x cos c x = 1 c sen c x + 1 c ln | tan ( π 4 + c x 2 ) | {\displaystyle \int {\frac {\operatorname {sen} ^{2}cx\;dx}{\cos cx}}=-{\frac {1}{c}}\operatorname {sen} cx+{\frac {1}{c}}\ln \left|\tan \left({\frac {\pi }{4}}+{\frac {cx}{2}}\right)\right|}
sen 2 c x d x cos n c x = sen c x c ( n 1 ) cos n 1 c x 1 n 1 d x cos n 2 c x (para  n 1 ) {\displaystyle \int {\frac {\operatorname {sen} ^{2}cx\;dx}{\cos ^{n}cx}}={\frac {\operatorname {sen} cx}{c(n-1)\cos ^{n-1}cx}}-{\frac {1}{n-1}}\int {\frac {dx}{\cos ^{n-2}cx}}\qquad {\mbox{(para }}n\neq 1{\mbox{)}}}
sen n c x d x cos c x = sen n 1 c x c ( n 1 ) + sen n 2 c x d x cos c x (for  n 1 ) {\displaystyle \int {\frac {\operatorname {sen} ^{n}cx\;dx}{\cos cx}}=-{\frac {\operatorname {sen} ^{n-1}cx}{c(n-1)}}+\int {\frac {\operatorname {sen} ^{n-2}cx\;dx}{\cos cx}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}}
s e n n c x d x cos m c x = sen n + 1 c x c ( m 1 ) cos m 1 c x n m + 2 m 1 sen n c x d x cos m 2 c x (para  m 1 ) {\displaystyle \int {\frac {sen^{n}cx\;dx}{\cos ^{m}cx}}={\frac {\operatorname {sen} ^{n+1}cx}{c(m-1)\cos ^{m-1}cx}}-{\frac {n-m+2}{m-1}}\int {\frac {\operatorname {sen} ^{n}cx\;dx}{\cos ^{m-2}cx}}\qquad {\mbox{(para }}m\neq 1{\mbox{)}}}
también: s e n n c x d x cos m c x = sen n 1 c x c ( n m ) cos m 1 c x + n 1 n m sen n 2 c x d x cos m c x (para  m n ) {\displaystyle \int {\frac {sen^{n}cx\;dx}{\cos ^{m}cx}}=-{\frac {\operatorname {sen} ^{n-1}cx}{c(n-m)\cos ^{m-1}cx}}+{\frac {n-1}{n-m}}\int {\frac {\operatorname {sen} ^{n-2}cx\;dx}{\cos ^{m}cx}}\qquad {\mbox{(para }}m\neq n{\mbox{)}}}
también: s e n n c x d x cos m c x = sen n 1 c x c ( m 1 ) cos m 1 c x n 1 n 1 sen n 1 c x d x cos m 2 c x (para  m 1 ) {\displaystyle \int {\frac {sen^{n}cx\;dx}{\cos ^{m}cx}}={\frac {\operatorname {sen} ^{n-1}cx}{c(m-1)\cos ^{m-1}cx}}-{\frac {n-1}{n-1}}\int {\frac {\operatorname {sen} ^{n-1}cx\;dx}{\cos ^{m-2}cx}}\qquad {\mbox{(para }}m\neq 1{\mbox{)}}}
cos c x d x sen n c x = 1 c ( n 1 ) sen n 1 c x (para  n 1 ) {\displaystyle \int {\frac {\cos cx\;dx}{\operatorname {sen} ^{n}cx}}=-{\frac {1}{c(n-1)\operatorname {sen} ^{n-1}cx}}\qquad {\mbox{(para }}n\neq 1{\mbox{)}}}
cos 2 c x d x sen c x = 1 c ( cos c x + ln | tan c x 2 | ) {\displaystyle \int {\frac {\cos ^{2}cx\;dx}{\operatorname {sen} cx}}={\frac {1}{c}}\left(\cos cx+\ln \left|\tan {\frac {cx}{2}}\right|\right)}
cos 2 c x d x sen n c x = 1 n 1 ( cos c x c sen n 1 c x ) + d x sen n 2 c x ) (para  n 1 ) {\displaystyle \int {\frac {\cos ^{2}cx\;dx}{\operatorname {sen} ^{n}cx}}=-{\frac {1}{n-1}}\left({\frac {\cos cx}{c\operatorname {sen} ^{n-1}cx)}}+\int {\frac {dx}{\operatorname {sen} ^{n-2}cx}}\right)\qquad {\mbox{(para }}n\neq 1{\mbox{)}}}
cos n c x d x sen m c x = cos n + 1 c x c ( m 1 ) sen m 1 c x n m 2 m 1 c o s n c x d x sen m 2 c x (para  m 1 ) {\displaystyle \int {\frac {\cos ^{n}cx\;dx}{\operatorname {sen} ^{m}cx}}=-{\frac {\cos ^{n+1}cx}{c(m-1)\operatorname {sen} ^{m-1}cx}}-{\frac {n-m-2}{m-1}}\int {\frac {cos^{n}cx\;dx}{\operatorname {sen} ^{m-2}cx}}\qquad {\mbox{(para }}m\neq 1{\mbox{)}}}
también: cos n c x d x sen m c x = cos n 1 c x c ( n m ) sen m 1 c x + n 1 n m c o s n 2 c x d x sen m c x (para  m n ) {\displaystyle \int {\frac {\cos ^{n}cx\;dx}{\operatorname {sen} ^{m}cx}}={\frac {\cos ^{n-1}cx}{c(n-m)\operatorname {sen} ^{m-1}cx}}+{\frac {n-1}{n-m}}\int {\frac {cos^{n-2}cx\;dx}{\operatorname {sen} ^{m}cx}}\qquad {\mbox{(para }}m\neq n{\mbox{)}}}
también: cos n c x d x sen m c x = cos n 1 c x c ( m 1 ) sen m 1 c x n 1 m 1 c o s n 2 c x d x sen m 2 c x (para  m 1 ) {\displaystyle \int {\frac {\cos ^{n}cx\;dx}{\operatorname {sen} ^{m}cx}}=-{\frac {\cos ^{n-1}cx}{c(m-1)\operatorname {sen} ^{m-1}cx}}-{\frac {n-1}{m-1}}\int {\frac {cos^{n-2}cx\;dx}{\operatorname {sen} ^{m-2}cx}}\qquad {\mbox{(para }}m\neq 1{\mbox{)}}}

Integrales que contienen sen y tan

sen c x tan c x d x = 1 c ( ln | sec c x + tan c x | sen c x ) {\displaystyle \int \operatorname {sen} cx\tan cx\;dx={\frac {1}{c}}(\ln |\sec cx+\tan cx|-\operatorname {sen} cx)\,\!}
tan n c x d x sen 2 c x = 1 f f f c ( n 1 ) tan n 1 ( c x ) (para  n 1 ) {\displaystyle \int {\frac {\tan ^{n}cx\;dx}{\operatorname {sen} ^{2}cx}}={\frac {1}{f}}ff{c(n-1)}\tan ^{n-1}(cx)\qquad {\mbox{(para }}n\neq 1{\mbox{)}}\,\!}

Integrales que contienen cos y tan

tan n c x d x cos 2 c x = 1 c ( n + 1 ) tan n + 1 c x (para  n 1 ) {\displaystyle \int {\frac {\tan ^{n}cx\;dx}{\cos ^{2}cx}}={\frac {1}{c(n+1)}}\tan ^{n+1}cx\qquad {\mbox{(para }}n\neq 1{\mbox{)}}}

Integrales que contienen sen y cot

cot n c x d x s e n 2 c x = 1 c ( n + 1 ) cot n + 1 c x (para  n 1 ) {\displaystyle \int {\frac {\cot ^{n}cx\;dx}{sen^{2}cx}}={\frac {1}{c(n+1)}}\cot ^{n+1}cx\qquad {\mbox{(para }}n\neq 1{\mbox{)}}}

Integrales que contienen cos y cot

cot n c x d x cos 2 c x = 1 c ( 1 n ) tan 1 n c x (para  n 1 ) {\displaystyle \int {\frac {\cot ^{n}cx\;dx}{\cos ^{2}cx}}={\frac {1}{c(1-n)}}\tan ^{1-n}cx\qquad {\mbox{(para }}n\neq 1{\mbox{)}}\,\!}


Integrales que contienen tan y cot

cot c x tan c x d x = x   {\displaystyle \int \cot cx\tan cx\;dx=x\ }

Integrales que contienen sec

sec 2 x d x = tan x + c {\displaystyle \int \sec ^{2}x\;dx=\tan x+c}
sec x d x = ln | sec x + tan x | + c {\displaystyle \int \sec x\;dx=\ln |\sec x+\tan x|+c}

Referencias

  1. [ #FÓRMULA ] Integral de sen(ax²+bx+c) con raíces Positivas y Negativas, consultado el 1 de septiembre de 2021 . Gabriel Tovar