Yoneda product

In algebra, the Yoneda product (named after Nobuo Yoneda) is the pairing between Ext groups of modules:

Ext n ( M , N ) Ext m ( L , M ) Ext n + m ( L , N ) {\displaystyle \operatorname {Ext} ^{n}(M,N)\otimes \operatorname {Ext} ^{m}(L,M)\to \operatorname {Ext} ^{n+m}(L,N)}
induced by
Hom ( N , M ) Hom ( M , L ) Hom ( N , L ) , f g g f . {\displaystyle \operatorname {Hom} (N,M)\otimes \operatorname {Hom} (M,L)\to \operatorname {Hom} (N,L),\,f\otimes g\mapsto g\circ f.}

Specifically, for an element ξ Ext n ( M , N ) {\displaystyle \xi \in \operatorname {Ext} ^{n}(M,N)} , thought of as an extension

ξ : 0 N E 0 E n 1 M 0 , {\displaystyle \xi :0\rightarrow N\rightarrow E_{0}\rightarrow \cdots \rightarrow E_{n-1}\rightarrow M\rightarrow 0,}
and similarly
ρ : 0 M F 0 F m 1 L 0 Ext m ( L , M ) , {\displaystyle \rho :0\rightarrow M\rightarrow F_{0}\rightarrow \cdots \rightarrow F_{m-1}\rightarrow L\rightarrow 0\in \operatorname {Ext} ^{m}(L,M),}
we form the Yoneda (cup) product
ξ ρ : 0 N E 0 E n 1 F 0 F m 1 L 0 Ext m + n ( L , N ) . {\displaystyle \xi \smile \rho :0\rightarrow N\rightarrow E_{0}\rightarrow \cdots \rightarrow E_{n-1}\rightarrow F_{0}\rightarrow \cdots \rightarrow F_{m-1}\rightarrow L\rightarrow 0\in \operatorname {Ext} ^{m+n}(L,N).}

Note that the middle map E n 1 F 0 {\displaystyle E_{n-1}\rightarrow F_{0}} factors through the given maps to M {\displaystyle M} .

We extend this definition to include m , n = 0 {\displaystyle m,n=0} using the usual functoriality of the Ext ( , ) {\displaystyle \operatorname {Ext} ^{*}(\cdot ,\cdot )} groups.

Applications

Ext Algebras

Given a commutative ring R {\displaystyle R} and a module M {\displaystyle M} , the Yoneda product defines a product structure on the groups Ext ( M , M ) {\displaystyle {\text{Ext}}^{\bullet }(M,M)} , where Ext 0 ( M , M ) = Hom R ( M , M ) {\displaystyle {\text{Ext}}^{0}(M,M)={\text{Hom}}_{R}(M,M)} is generally a non-commutative ring. This can be generalized to the case of sheaves of modules over a ringed space, or ringed topos.

Grothendieck duality

In Grothendieck's duality theory of coherent sheaves on a projective scheme i : X P k n {\displaystyle i:X\hookrightarrow \mathbb {P} _{k}^{n}} of pure dimension r {\displaystyle r} over an algebraically closed field k {\displaystyle k} , there is a pairing

Ext O X p ( O X , F ) × Ext O X r p ( F , ω X ) k {\displaystyle {\text{Ext}}_{{\mathcal {O}}_{X}}^{p}({\mathcal {O}}_{X},{\mathcal {F}})\times {\text{Ext}}_{{\mathcal {O}}_{X}}^{r-p}({\mathcal {F}},\omega _{X}^{\bullet })\to k}
where ω X {\displaystyle \omega _{X}} is the dualizing complex ω X = E x t O P n r ( i F , ω P ) {\displaystyle \omega _{X}={\mathcal {Ext}}_{{\mathcal {O}}_{\mathbb {P} }}^{n-r}(i_{*}{\mathcal {F}},\omega _{\mathbb {P} })} and ω P = O P ( ( n + 1 ) ) {\displaystyle \omega _{\mathbb {P} }={\mathcal {O}}_{\mathbb {P} }(-(n+1))} given by the Yoneda pairing.[1]

Deformation theory

The Yoneda product is useful for understanding the obstructions to a deformation of maps of ringed topoi.[2] For example, given a composition of ringed topoi

X f Y S {\displaystyle X\xrightarrow {f} Y\to S}
and an S {\displaystyle S} -extension j : Y Y {\displaystyle j:Y\to Y'} of Y {\displaystyle Y} by an O Y {\displaystyle {\mathcal {O}}_{Y}} -module J {\displaystyle J} , there is an obstruction class
ω ( f , j ) Ext 2 ( L X / Y , f J ) {\displaystyle \omega (f,j)\in {\text{Ext}}^{2}(\mathbf {L} _{X/Y},f^{*}J)}
which can be described as the yoneda product
ω ( f , j ) = f ( e ( j ) ) K ( X / Y / S ) {\displaystyle \omega (f,j)=f^{*}(e(j))\cdot K(X/Y/S)}
where
K ( X / Y / S ) Ext 1 ( L X / Y , L Y / S ) f ( e ( j ) ) Ext 1 ( f L Y / S , f J ) {\displaystyle {\begin{aligned}K(X/Y/S)&\in {\text{Ext}}^{1}(\mathbf {L} _{X/Y},\mathbf {L} _{Y/S})\\f^{*}(e(j))&\in {\text{Ext}}^{1}(f^{*}\mathbf {L} _{Y/S},f^{*}J)\end{aligned}}}
and L X / Y {\displaystyle \mathbf {L} _{X/Y}} corresponds to the cotangent complex.

See also

References

  1. ^ Altman; Kleiman (1970). Grothendieck Duality. Lecture Notes in Mathematics. Vol. 146. p. 5. doi:10.1007/BFb0060932. ISBN 978-3-540-04935-7.
  2. ^ Illusie, Luc. "Complexe cotangent; application a la theorie des deformations" (PDF). p. 163.
  • May, J. Peter. "Notes on Tor and Ext" (PDF).

External links

  • Universality of Ext functor using Yoneda extensions