Weyl integral

Part of a series of articles about
Calculus
a b f ( t ) d t = f ( b ) f ( a ) {\displaystyle \int _{a}^{b}f'(t)\,dt=f(b)-f(a)}
  • Rolle's theorem
  • Mean value theorem
  • Inverse function theorem
Differential
Definitions
Concepts
  • Differentiation notation
  • Second derivative
  • Implicit differentiation
  • Logarithmic differentiation
  • Related rates
  • Taylor's theorem
Rules and identities
  • v
  • t
  • e

In mathematics, the Weyl integral (named after Hermann Weyl) is an operator defined, as an example of fractional calculus, on functions f on the unit circle having integral 0 and a Fourier series. In other words there is a Fourier series for f of the form

n = a n e i n θ {\displaystyle \sum _{n=-\infty }^{\infty }a_{n}e^{in\theta }}

with a0 = 0.

Then the Weyl integral operator of order s is defined on Fourier series by

n = ( i n ) s a n e i n θ {\displaystyle \sum _{n=-\infty }^{\infty }(in)^{s}a_{n}e^{in\theta }}

where this is defined. Here s can take any real value, and for integer values k of s the series expansion is the expected k-th derivative, if k > 0, or (−k)th indefinite integral normalized by integration from θ = 0.

The condition a0 = 0 here plays the obvious role of excluding the need to consider division by zero. The definition is due to Hermann Weyl (1917).

See also

References