Steric 5-cubes

  • 5-cube
  • Steric 5-cube
  • Stericantic 5-cube
  • Half 5-cube
  • Steriruncic 5-cube
  • Steriruncicantic 5-cube
Orthogonal projections in B5 Coxeter plane

In five-dimensional geometry, a steric 5-cube or (steric 5-demicube or sterihalf 5-cube) is a convex uniform 5-polytope. There are unique 4 steric forms of the 5-cube. Steric 5-cubes have half the vertices of stericated 5-cubes.

Steric 5-cube

Steric 5-cube
Type uniform polyteron
Schläfli symbol
  • t0,3{3,32,1}
  • h4{4,3,3,3
}
Coxeter-Dynkin diagram
4-faces 82
Cells 480
Faces 720
Edges 400
Vertices 80
Vertex figure {3,3}-t1{3,3} antiprism
Coxeter groups D5, [32,1,1]
Properties convex

Alternate names

  • Steric penteract, runcinated demipenteract
  • Small prismated hemipenteract (siphin) (Jonathan Bowers)[1]: (x3o3o *b3o3x - siphin) 

Cartesian coordinates

The Cartesian coordinates for the 80 vertices of a steric 5-cube centered at the origin are the permutations of

(±1,±1,±1,±1,±3)

with an odd number of plus signs.

Images

orthographic projections
Coxeter plane B5
Graph
Dihedral symmetry [10/2]
Coxeter plane D5 D4
Graph
Dihedral symmetry [8] [6]
Coxeter plane D3 A3
Graph
Dihedral symmetry [4] [4]

Related polytopes

Dimensional family of steric n-cubes
n 5 6 7 8
[1+,4,3n-2]
= [3,3n-3,1]
[1+,4,33]
= [3,32,1]
[1+,4,34]
= [3,33,1]
[1+,4,35]
= [3,34,1]
[1+,4,36]
= [3,35,1]
Steric
figure
Coxeter
=

=

=

=
Schläfli h4{4,33} h4{4,34} h4{4,35} h4{4,36}

Stericantic 5-cube

Stericantic 5-cube
Type uniform polyteron
Schläfli symbol
  • t0,1,3{3,32,1}
  • h2,4{4,3,3,3
}
Coxeter-Dynkin diagram
4-faces 82
Cells 720
Faces 1840
Edges 1680
Vertices 480
Vertex figure
Coxeter groups D5, [32,1,1]
Properties convex

Alternate names

  • Prismatotruncated hemipenteract (pithin) (Jonathan Bowers)[1]: (x3x3o *b3o3x - pithin) 

Cartesian coordinates

The Cartesian coordinates for the 480 vertices of a stericantic 5-cube centered at the origin are coordinate permutations:

(±1,±1,±3,±3,±5)

with an odd number of plus signs.

Images

orthographic projections
Coxeter plane B5
Graph
Dihedral symmetry [10/2]
Coxeter plane D5 D4
Graph
Dihedral symmetry [8] [6]
Coxeter plane D3 A3
Graph
Dihedral symmetry [4] [4]

Steriruncic 5-cube

Steriruncic 5-cube
Type uniform polyteron
Schläfli symbol
  • t0,2,3{3,32,1}
  • h3,4{4,3,3,3
}
Coxeter-Dynkin diagram
4-faces 82
Cells 560
Faces 1280
Edges 1120
Vertices 320
Vertex figure
Coxeter groups D5, [32,1,1]
Properties convex

Alternate names

  • Prismatorhombated hemipenteract (pirhin) (Jonathan Bowers)[1]: (x3o3o *b3x3x - pirhin) 

Cartesian coordinates

The Cartesian coordinates for the 320 vertices of a steriruncic 5-cube centered at the origin are coordinate permutations:

(±1,±1,±1,±3,±5)

with an odd number of plus signs.

Images

orthographic projections
Coxeter plane B5
Graph
Dihedral symmetry [10/2]
Coxeter plane D5 D4
Graph
Dihedral symmetry [8] [6]
Coxeter plane D3 A3
Graph
Dihedral symmetry [4] [4]

Steriruncicantic 5-cube

Steriruncicantic 5-cube
Type uniform polyteron
Schläfli symbol
  • t0,1,2,3{3,32,1}
  • h2,3,4{4,3,3,3
}
Coxeter-Dynkin diagram
4-faces 82
Cells 720
Faces 2080
Edges 2400
Vertices 960
Vertex figure
Coxeter groups D5, [32,1,1]
Properties convex

Alternate names

  • Great prismated hemipenteract (giphin) (Jonathan Bowers)[1]: (x3x3o *b3x3x - giphin) 

Cartesian coordinates

The Cartesian coordinates for the 960 vertices of a steriruncicantic 5-cube centered at the origin are coordinate permutations:

(±1,±1,±3,±5,±7)

with an odd number of plus signs.

Images

orthographic projections
Coxeter plane B5
Graph
Dihedral symmetry [10/2]
Coxeter plane D5 D4
Graph
Dihedral symmetry [8] [6]
Coxeter plane D3 A3
Graph
Dihedral symmetry [4] [4]

Related polytopes

This polytope is based on the 5-demicube, a part of a dimensional family of uniform polytopes called demihypercubes for being alternation of the hypercube family.

There are 23 uniform polytera (uniform 5-polytope) that can be constructed from the D5 symmetry of the 5-demicube, of which are unique to this family, and 15 are shared within the 5-cube family.

D5 polytopes

h{4,3,3,3}

h2{4,3,3,3}

h3{4,3,3,3}

h4{4,3,3,3}

h2,3{4,3,3,3}

h2,4{4,3,3,3}

h3,4{4,3,3,3}

h2,3,4{4,3,3,3}

References

  1. ^ a b c d Klitzing, Richard. "5D uniform polytopes (polytera)".

Further reading

  • Coxeter, H. S. M. (1973). Regular Polytopes (3rd ed.). New York City: Dover. Retrieved 2022-05-19.
  • Coxeter, H. S. M. (1995-05-17). Sherk, F. Arthur; McMullen, Peter; Thompson, Anthony C.; Weiss, Asia Ivić (eds.). Kaleidoscopes: Selected Writings of H.S.M. Coxeter. Canadian Mathematical Society Series of Monographs and Advanced Texts. John Wiley & Sons. ISBN 978-0-471-01003-6. LCCN 94047368. OCLC 632987525. OL 7598569M. Retrieved 2022-05-19.
  • Coxeter, H. S. M. (1940-12-01). "Regular and Semi Regular Polytopes I". Mathematische Zeitschrift. 46. Springer Nature: 380–407. doi:10.1007/BF01181449. ISSN 1432-1823. S2CID 186237114. Retrieved 2022-05-19.
  • Coxeter, H. S. M. (1985-12-01). "Regular and Semi-Regular Polytopes II". Mathematische Zeitschrift. 188 (4). Springer Nature: 559–591. doi:10.1007/BF01161657. ISSN 1432-1823. S2CID 120429557. Retrieved 2022-05-19.
  • Coxeter, H. S. M. (1988-03-01). "Regular and Semi-Regular Polytopes III". Mathematische Zeitschrift. 200 (1). Springer Nature: 3–45. doi:10.1007/BF01161745. ISSN 1432-1823. S2CID 186237142. Retrieved 2022-05-19.
  • Johnson, Norman W. (1991). Uniform Polytopes (Unfinished manuscript thesis).
  • Johnson, Norman W. (1966). The Theory of Uniform Polytopes and Honeycombs (PhD thesis). University of Toronto. Retrieved 2022-05-19.

External links

  • v
  • t
  • e
Fundamental convex regular and uniform polytopes in dimensions 2–10
Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform polychoron Pentachoron 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122 • 221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132 • 231 • 321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142 • 241 • 421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k2 • 2k1 • k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds