Rational zeta series

In mathematics, a rational zeta series is the representation of an arbitrary real number in terms of a series consisting of rational numbers and the Riemann zeta function or the Hurwitz zeta function. Specifically, given a real number x, the rational zeta series for x is given by

x = n = 2 q n ζ ( n , m ) {\displaystyle x=\sum _{n=2}^{\infty }q_{n}\zeta (n,m)}

where qn is a rational number, the value m is held fixed, and ζ(sm) is the Hurwitz zeta function. It is not hard to show that any real number x can be expanded in this way.

Elementary series

For integer m>1, one has

x = n = 2 q n [ ζ ( n ) k = 1 m 1 k n ] {\displaystyle x=\sum _{n=2}^{\infty }q_{n}\left[\zeta (n)-\sum _{k=1}^{m-1}k^{-n}\right]}

For m=2, a number of interesting numbers have a simple expression as rational zeta series:

1 = n = 2 [ ζ ( n ) 1 ] {\displaystyle 1=\sum _{n=2}^{\infty }\left[\zeta (n)-1\right]}

and

1 γ = n = 2 1 n [ ζ ( n ) 1 ] {\displaystyle 1-\gamma =\sum _{n=2}^{\infty }{\frac {1}{n}}\left[\zeta (n)-1\right]}

where γ is the Euler–Mascheroni constant. The series

log 2 = n = 1 1 n [ ζ ( 2 n ) 1 ] {\displaystyle \log 2=\sum _{n=1}^{\infty }{\frac {1}{n}}\left[\zeta (2n)-1\right]}

follows by summing the Gauss–Kuzmin distribution. There are also series for π:

log π = n = 2 2 ( 3 / 2 ) n 3 n [ ζ ( n ) 1 ] {\displaystyle \log \pi =\sum _{n=2}^{\infty }{\frac {2(3/2)^{n}-3}{n}}\left[\zeta (n)-1\right]}

and

13 30 π 8 = n = 1 1 4 2 n [ ζ ( 2 n ) 1 ] {\displaystyle {\frac {13}{30}}-{\frac {\pi }{8}}=\sum _{n=1}^{\infty }{\frac {1}{4^{2n}}}\left[\zeta (2n)-1\right]}

being notable because of its fast convergence. This last series follows from the general identity

n = 1 ( 1 ) n t 2 n [ ζ ( 2 n ) 1 ] = t 2 1 + t 2 + 1 π t 2 π t e 2 π t 1 {\displaystyle \sum _{n=1}^{\infty }(-1)^{n}t^{2n}\left[\zeta (2n)-1\right]={\frac {t^{2}}{1+t^{2}}}+{\frac {1-\pi t}{2}}-{\frac {\pi t}{e^{2\pi t}-1}}}

which in turn follows from the generating function for the Bernoulli numbers

t e t 1 = n = 0 B n t n n ! {\displaystyle {\frac {t}{e^{t}-1}}=\sum _{n=0}^{\infty }B_{n}{\frac {t^{n}}{n!}}}

Adamchik and Srivastava give a similar series

n = 1 t 2 n n ζ ( 2 n ) = log ( π t sin ( π t ) ) {\displaystyle \sum _{n=1}^{\infty }{\frac {t^{2n}}{n}}\zeta (2n)=\log \left({\frac {\pi t}{\sin(\pi t)}}\right)}

Polygamma-related series

A number of additional relationships can be derived from the Taylor series for the polygamma function at z = 1, which is

ψ ( m ) ( z + 1 ) = k = 0 ( 1 ) m + k + 1 ( m + k ) ! ζ ( m + k + 1 ) z k k ! {\displaystyle \psi ^{(m)}(z+1)=\sum _{k=0}^{\infty }(-1)^{m+k+1}(m+k)!\;\zeta (m+k+1)\;{\frac {z^{k}}{k!}}} .

The above converges for |z| < 1. A special case is

n = 2 t n [ ζ ( n ) 1 ] = t [ γ + ψ ( 1 t ) t 1 t ] {\displaystyle \sum _{n=2}^{\infty }t^{n}\left[\zeta (n)-1\right]=-t\left[\gamma +\psi (1-t)-{\frac {t}{1-t}}\right]}

which holds for |t| < 2. Here, ψ is the digamma function and ψ(m) is the polygamma function. Many series involving the binomial coefficient may be derived:

k = 0 ( k + ν + 1 k ) [ ζ ( k + ν + 2 ) 1 ] = ζ ( ν + 2 ) {\displaystyle \sum _{k=0}^{\infty }{k+\nu +1 \choose k}\left[\zeta (k+\nu +2)-1\right]=\zeta (\nu +2)}

where ν is a complex number. The above follows from the series expansion for the Hurwitz zeta

ζ ( s , x + y ) = k = 0 ( s + k 1 s 1 ) ( y ) k ζ ( s + k , x ) {\displaystyle \zeta (s,x+y)=\sum _{k=0}^{\infty }{s+k-1 \choose s-1}(-y)^{k}\zeta (s+k,x)}

taken at y = −1. Similar series may be obtained by simple algebra:

k = 0 ( k + ν + 1 k + 1 ) [ ζ ( k + ν + 2 ) 1 ] = 1 {\displaystyle \sum _{k=0}^{\infty }{k+\nu +1 \choose k+1}\left[\zeta (k+\nu +2)-1\right]=1}

and

k = 0 ( 1 ) k ( k + ν + 1 k + 1 ) [ ζ ( k + ν + 2 ) 1 ] = 2 ( ν + 1 ) {\displaystyle \sum _{k=0}^{\infty }(-1)^{k}{k+\nu +1 \choose k+1}\left[\zeta (k+\nu +2)-1\right]=2^{-(\nu +1)}}

and

k = 0 ( 1 ) k ( k + ν + 1 k + 2 ) [ ζ ( k + ν + 2 ) 1 ] = ν [ ζ ( ν + 1 ) 1 ] 2 ν {\displaystyle \sum _{k=0}^{\infty }(-1)^{k}{k+\nu +1 \choose k+2}\left[\zeta (k+\nu +2)-1\right]=\nu \left[\zeta (\nu +1)-1\right]-2^{-\nu }}

and

k = 0 ( 1 ) k ( k + ν + 1 k ) [ ζ ( k + ν + 2 ) 1 ] = ζ ( ν + 2 ) 1 2 ( ν + 2 ) {\displaystyle \sum _{k=0}^{\infty }(-1)^{k}{k+\nu +1 \choose k}\left[\zeta (k+\nu +2)-1\right]=\zeta (\nu +2)-1-2^{-(\nu +2)}}

For integer n ≥ 0, the series

S n = k = 0 ( k + n k ) [ ζ ( k + n + 2 ) 1 ] {\displaystyle S_{n}=\sum _{k=0}^{\infty }{k+n \choose k}\left[\zeta (k+n+2)-1\right]}

can be written as the finite sum

S n = ( 1 ) n [ 1 + k = 1 n ζ ( k + 1 ) ] {\displaystyle S_{n}=(-1)^{n}\left[1+\sum _{k=1}^{n}\zeta (k+1)\right]}

The above follows from the simple recursion relation Sn + Sn + 1 = ζ(n + 2). Next, the series

T n = k = 0 ( k + n 1 k ) [ ζ ( k + n + 2 ) 1 ] {\displaystyle T_{n}=\sum _{k=0}^{\infty }{k+n-1 \choose k}\left[\zeta (k+n+2)-1\right]}

may be written as

T n = ( 1 ) n + 1 [ n + 1 ζ ( 2 ) + k = 1 n 1 ( 1 ) k ( n k ) ζ ( k + 1 ) ] {\displaystyle T_{n}=(-1)^{n+1}\left[n+1-\zeta (2)+\sum _{k=1}^{n-1}(-1)^{k}(n-k)\zeta (k+1)\right]}

for integer n ≥ 1. The above follows from the identity Tn + Tn + 1 = Sn. This process may be applied recursively to obtain finite series for general expressions of the form

k = 0 ( k + n m k ) [ ζ ( k + n + 2 ) 1 ] {\displaystyle \sum _{k=0}^{\infty }{k+n-m \choose k}\left[\zeta (k+n+2)-1\right]}

for positive integers m.

Half-integer power series

Similar series may be obtained by exploring the Hurwitz zeta function at half-integer values. Thus, for example, one has

k = 0 ζ ( k + n + 2 ) 1 2 k ( n + k + 1 n + 1 ) = ( 2 n + 2 1 ) ( ζ ( n + 2 ) 1 ) 1 {\displaystyle \sum _{k=0}^{\infty }{\frac {\zeta (k+n+2)-1}{2^{k}}}{{n+k+1} \choose {n+1}}=\left(2^{n+2}-1\right)\left(\zeta (n+2)-1\right)-1}

Expressions in the form of p-series

Adamchik and Srivastava give

n = 2 n m [ ζ ( n ) 1 ] = 1 + k = 1 m k ! S ( m + 1 , k + 1 ) ζ ( k + 1 ) {\displaystyle \sum _{n=2}^{\infty }n^{m}\left[\zeta (n)-1\right]=1\,+\sum _{k=1}^{m}k!\;S(m+1,k+1)\zeta (k+1)}

and

n = 2 ( 1 ) n n m [ ζ ( n ) 1 ] = 1 + 1 2 m + 1 m + 1 B m + 1 k = 1 m ( 1 ) k k ! S ( m + 1 , k + 1 ) ζ ( k + 1 ) {\displaystyle \sum _{n=2}^{\infty }(-1)^{n}n^{m}\left[\zeta (n)-1\right]=-1\,+\,{\frac {1-2^{m+1}}{m+1}}B_{m+1}\,-\sum _{k=1}^{m}(-1)^{k}k!\;S(m+1,k+1)\zeta (k+1)}

where B k {\displaystyle B_{k}} are the Bernoulli numbers and S ( m , k ) {\displaystyle S(m,k)} are the Stirling numbers of the second kind.

Other series

Other constants that have notable rational zeta series are:

References

  • Jonathan M. Borwein, David M. Bradley, Richard E. Crandall (2000). "Computational Strategies for the Riemann Zeta Function" (PDF). J. Comput. Appl. Math. 121 (1–2): 247–296. Bibcode:2000JCoAM.121..247B. doi:10.1016/s0377-0427(00)00336-8.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  • Victor S. Adamchik and H. M. Srivastava (1998). "Some series of the zeta and related functions" (PDF). Analysis. 18 (2): 131–144. CiteSeerX 10.1.1.127.9800. doi:10.1524/anly.1998.18.2.131. S2CID 11370668.