Ramanujan's sum

A math function by Srinivasa Ramanujan

In number theory, Ramanujan's sum, usually denoted cq(n), is a function of two positive integer variables q and n defined by the formula

c q ( n ) = 1 a q ( a , q ) = 1 e 2 π i a q n , {\displaystyle c_{q}(n)=\sum _{1\leq a\leq q \atop (a,q)=1}e^{2\pi i{\tfrac {a}{q}}n},}

where (a, q) = 1 means that a only takes on values coprime to q.

Srinivasa Ramanujan mentioned the sums in a 1918 paper.[1] In addition to the expansions discussed in this article, Ramanujan's sums are used in the proof of Vinogradov's theorem that every sufficiently large odd number is the sum of three primes.[2]

Notation

For integers a and b, a b {\displaystyle a\mid b} is read "a divides b" and means that there is an integer c such that b a = c . {\displaystyle {\frac {b}{a}}=c.} Similarly, a b {\displaystyle a\nmid b} is read "a does not divide b". The summation symbol

d m f ( d ) {\displaystyle \sum _{d\,\mid \,m}f(d)}

means that d goes through all the positive divisors of m, e.g.

d 12 f ( d ) = f ( 1 ) + f ( 2 ) + f ( 3 ) + f ( 4 ) + f ( 6 ) + f ( 12 ) . {\displaystyle \sum _{d\,\mid \,12}f(d)=f(1)+f(2)+f(3)+f(4)+f(6)+f(12).}

( a , b ) {\displaystyle (a,\,b)} is the greatest common divisor,

ϕ ( n ) {\displaystyle \phi (n)} is Euler's totient function,

μ ( n ) {\displaystyle \mu (n)} is the Möbius function, and

ζ ( s ) {\displaystyle \zeta (s)} is the Riemann zeta function.

Formulas for cq(n)

Trigonometry

These formulas come from the definition, Euler's formula e i x = cos x + i sin x , {\displaystyle e^{ix}=\cos x+i\sin x,} and elementary trigonometric identities.

c 1 ( n ) = 1 c 2 ( n ) = cos n π c 3 ( n ) = 2 cos 2 3 n π c 4 ( n ) = 2 cos 1 2 n π c 5 ( n ) = 2 cos 2 5 n π + 2 cos 4 5 n π c 6 ( n ) = 2 cos 1 3 n π c 7 ( n ) = 2 cos 2 7 n π + 2 cos 4 7 n π + 2 cos 6 7 n π c 8 ( n ) = 2 cos 1 4 n π + 2 cos 3 4 n π c 9 ( n ) = 2 cos 2 9 n π + 2 cos 4 9 n π + 2 cos 8 9 n π c 10 ( n ) = 2 cos 1 5 n π + 2 cos 3 5 n π {\displaystyle {\begin{aligned}c_{1}(n)&=1\\c_{2}(n)&=\cos n\pi \\c_{3}(n)&=2\cos {\tfrac {2}{3}}n\pi \\c_{4}(n)&=2\cos {\tfrac {1}{2}}n\pi \\c_{5}(n)&=2\cos {\tfrac {2}{5}}n\pi +2\cos {\tfrac {4}{5}}n\pi \\c_{6}(n)&=2\cos {\tfrac {1}{3}}n\pi \\c_{7}(n)&=2\cos {\tfrac {2}{7}}n\pi +2\cos {\tfrac {4}{7}}n\pi +2\cos {\tfrac {6}{7}}n\pi \\c_{8}(n)&=2\cos {\tfrac {1}{4}}n\pi +2\cos {\tfrac {3}{4}}n\pi \\c_{9}(n)&=2\cos {\tfrac {2}{9}}n\pi +2\cos {\tfrac {4}{9}}n\pi +2\cos {\tfrac {8}{9}}n\pi \\c_{10}(n)&=2\cos {\tfrac {1}{5}}n\pi +2\cos {\tfrac {3}{5}}n\pi \\\end{aligned}}}

and so on (OEIS: A000012, OEIS: A033999, OEIS: A099837, OEIS: A176742,.., OEIS: A100051,...). cq(n) is always an integer.

Kluyver

Let ζ q = e 2 π i q . {\displaystyle \zeta _{q}=e^{\frac {2\pi i}{q}}.} Then ζq is a root of the equation xq − 1 = 0. Each of its powers,

ζ q , ζ q 2 , , ζ q q 1 , ζ q q = ζ q 0 = 1 {\displaystyle \zeta _{q},\zeta _{q}^{2},\ldots ,\zeta _{q}^{q-1},\zeta _{q}^{q}=\zeta _{q}^{0}=1}

is also a root. Therefore, since there are q of them, they are all of the roots. The numbers ζ q n {\displaystyle \zeta _{q}^{n}} where 1 ≤ nq are called the q-th roots of unity. ζq is called a primitive q-th root of unity because the smallest value of n that makes ζ q n = 1 {\displaystyle \zeta _{q}^{n}=1} is q. The other primitive q-th roots of unity are the numbers ζ q a {\displaystyle \zeta _{q}^{a}} where (a, q) = 1. Therefore, there are φ(q) primitive q-th roots of unity.

Thus, the Ramanujan sum cq(n) is the sum of the n-th powers of the primitive q-th roots of unity.

It is a fact[3] that the powers of ζq are precisely the primitive roots for all the divisors of q.

Example. Let q = 12. Then

ζ 12 , ζ 12 5 , ζ 12 7 , {\displaystyle \zeta _{12},\zeta _{12}^{5},\zeta _{12}^{7},} and ζ 12 11 {\displaystyle \zeta _{12}^{11}} are the primitive twelfth roots of unity,
ζ 12 2 {\displaystyle \zeta _{12}^{2}} and ζ 12 10 {\displaystyle \zeta _{12}^{10}} are the primitive sixth roots of unity,
ζ 12 3 = i {\displaystyle \zeta _{12}^{3}=i} and ζ 12 9 = i {\displaystyle \zeta _{12}^{9}=-i} are the primitive fourth roots of unity,
ζ 12 4 {\displaystyle \zeta _{12}^{4}} and ζ 12 8 {\displaystyle \zeta _{12}^{8}} are the primitive third roots of unity,
ζ 12 6 = 1 {\displaystyle \zeta _{12}^{6}=-1} is the primitive second root of unity, and
ζ 12 12 = 1 {\displaystyle \zeta _{12}^{12}=1} is the primitive first root of unity.

Therefore, if

η q ( n ) = k = 1 q ζ q k n {\displaystyle \eta _{q}(n)=\sum _{k=1}^{q}\zeta _{q}^{kn}}

is the sum of the n-th powers of all the roots, primitive and imprimitive,

η q ( n ) = d q c d ( n ) , {\displaystyle \eta _{q}(n)=\sum _{d\mid q}c_{d}(n),}

and by Möbius inversion,

c q ( n ) = d q μ ( q d ) η d ( n ) . {\displaystyle c_{q}(n)=\sum _{d\mid q}\mu \left({\frac {q}{d}}\right)\eta _{d}(n).}

It follows from the identity xq − 1 = (x − 1)(xq−1 + xq−2 + ... + x + 1) that

η q ( n ) = { 0 q n q q n {\displaystyle \eta _{q}(n)={\begin{cases}0&q\nmid n\\q&q\mid n\\\end{cases}}}

and this leads to the formula

c q ( n ) = d ( q , n ) μ ( q d ) d , {\displaystyle c_{q}(n)=\sum _{d\mid (q,n)}\mu \left({\frac {q}{d}}\right)d,}

published by Kluyver in 1906.[4]

This shows that cq(n) is always an integer. Compare it with the formula

ϕ ( q ) = d q μ ( q d ) d . {\displaystyle \phi (q)=\sum _{d\mid q}\mu \left({\frac {q}{d}}\right)d.}

von Sterneck

It is easily shown from the definition that cq(n) is multiplicative when considered as a function of q for a fixed value of n:[5] i.e.

If  ( q , r ) = 1  then  c q ( n ) c r ( n ) = c q r ( n ) . {\displaystyle {\mbox{If }}\;(q,r)=1\;{\mbox{ then }}\;c_{q}(n)c_{r}(n)=c_{qr}(n).}

From the definition (or Kluyver's formula) it is straightforward to prove that, if p is a prime number,

c p ( n ) = { 1  if  p n ϕ ( p )  if  p n , {\displaystyle c_{p}(n)={\begin{cases}-1&{\mbox{ if }}p\nmid n\\\phi (p)&{\mbox{ if }}p\mid n\\\end{cases}},}

and if pk is a prime power where k > 1,

c p k ( n ) = { 0  if  p k 1 n p k 1  if  p k 1 n  and  p k n ϕ ( p k )  if  p k n . {\displaystyle c_{p^{k}}(n)={\begin{cases}0&{\mbox{ if }}p^{k-1}\nmid n\\-p^{k-1}&{\mbox{ if }}p^{k-1}\mid n{\mbox{ and }}p^{k}\nmid n\\\phi (p^{k})&{\mbox{ if }}p^{k}\mid n\\\end{cases}}.}

This result and the multiplicative property can be used to prove

c q ( n ) = μ ( q ( q , n ) ) ϕ ( q ) ϕ ( q ( q , n ) ) . {\displaystyle c_{q}(n)=\mu \left({\frac {q}{(q,n)}}\right){\frac {\phi (q)}{\phi \left({\frac {q}{(q,n)}}\right)}}.}

This is called von Sterneck's arithmetic function.[6] The equivalence of it and Ramanujan's sum is due to Hölder.[7][8]

Other properties of cq(n)

For all positive integers q,

c 1 ( q ) = 1 c q ( 1 ) = μ ( q ) c q ( q ) = ϕ ( q ) c q ( m ) = c q ( n ) for  m n ( mod q ) {\displaystyle {\begin{aligned}c_{1}(q)&=1\\c_{q}(1)&=\mu (q)\\c_{q}(q)&=\phi (q)\\c_{q}(m)&=c_{q}(n)&&{\text{for }}m\equiv n{\pmod {q}}\\\end{aligned}}}

For a fixed value of q the absolute value of the sequence { c q ( 1 ) , c q ( 2 ) , } {\displaystyle \{c_{q}(1),c_{q}(2),\ldots \}} is bounded by φ(q), and for a fixed value of n the absolute value of the sequence { c 1 ( n ) , c 2 ( n ) , } {\displaystyle \{c_{1}(n),c_{2}(n),\ldots \}} is bounded by n.

If q > 1

n = a a + q 1 c q ( n ) = 0. {\displaystyle \sum _{n=a}^{a+q-1}c_{q}(n)=0.}

Let m1, m2 > 0, m = lcm(m1, m2). Then[9] Ramanujan's sums satisfy an orthogonality property:

1 m k = 1 m c m 1 ( k ) c m 2 ( k ) = { ϕ ( m ) m 1 = m 2 = m , 0 otherwise {\displaystyle {\frac {1}{m}}\sum _{k=1}^{m}c_{m_{1}}(k)c_{m_{2}}(k)={\begin{cases}\phi (m)&m_{1}=m_{2}=m,\\0&{\text{otherwise}}\end{cases}}}

Let n, k > 0. Then[10]

gcd ( d , k ) = 1 d n d μ ( n d ) ϕ ( d ) = μ ( n ) c n ( k ) ϕ ( n ) , {\displaystyle \sum _{\stackrel {d\mid n}{\gcd(d,k)=1}}d\;{\frac {\mu ({\tfrac {n}{d}})}{\phi (d)}}={\frac {\mu (n)c_{n}(k)}{\phi (n)}},}

known as the Brauer - Rademacher identity.

If n > 0 and a is any integer, we also have[11]

gcd ( k , n ) = 1 1 k n c n ( k a ) = μ ( n ) c n ( a ) , {\displaystyle \sum _{\stackrel {1\leq k\leq n}{\gcd(k,n)=1}}c_{n}(k-a)=\mu (n)c_{n}(a),}

due to Cohen.

Table

Ramanujan sum cs(n)
n
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
s 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1
3 −1 −1 2 −1 −1 2 −1 −1 2 −1 −1 2 −1 −1 2 −1 −1 2 −1 −1 2 −1 −1 2 −1 −1 2 −1 −1 2
4 0 −2 0 2 0 −2 0 2 0 −2 0 2 0 −2 0 2 0 −2 0 2 0 −2 0 2 0 −2 0 2 0 −2
5 −1 −1 −1 −1 4 −1 −1 −1 −1 4 −1 −1 −1 −1 4 −1 −1 −1 −1 4 −1 −1 −1 −1 4 −1 −1 −1 −1 4
6 1 −1 −2 −1 1 2 1 −1 −2 −1 1 2 1 −1 −2 −1 1 2 1 −1 −2 −1 1 2 1 −1 −2 −1 1 2
7 −1 −1 −1 −1 −1 −1 6 −1 −1 −1 −1 −1 −1 6 −1 −1 −1 −1 −1 −1 6 −1 −1 −1 −1 −1 −1 6 −1 −1
8 0 0 0 −4 0 0 0 4 0 0 0 −4 0 0 0 4 0 0 0 −4 0 0 0 4 0 0 0 −4 0 0
9 0 0 −3 0 0 −3 0 0 6 0 0 −3 0 0 −3 0 0 6 0 0 −3 0 0 −3 0 0 6 0 0 −3
10 1 −1 1 −1 −4 −1 1 −1 1 4 1 −1 1 −1 −4 −1 1 −1 1 4 1 −1 1 −1 −4 −1 1 −1 1 4
11 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 10 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 10 −1 −1 −1 −1 −1 −1 −1 −1
12 0 2 0 −2 0 −4 0 −2 0 2 0 4 0 2 0 −2 0 −4 0 −2 0 2 0 4 0 2 0 −2 0 −4
13 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 12 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 12 −1 −1 −1 −1
14 1 −1 1 −1 1 −1 −6 −1 1 −1 1 −1 1 6 1 −1 1 −1 1 −1 −6 −1 1 −1 1 −1 1 6 1 −1
15 1 1 −2 1 −4 −2 1 1 −2 −4 1 −2 1 1 8 1 1 −2 1 −4 −2 1 1 −2 −4 1 −2 1 1 8
16 0 0 0 0 0 0 0 −8 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 −8 0 0 0 0 0 0
17 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 16 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
18 0 0 3 0 0 −3 0 0 −6 0 0 −3 0 0 3 0 0 6 0 0 3 0 0 −3 0 0 −6 0 0 −3
19 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 18 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
20 0 2 0 −2 0 2 0 −2 0 −8 0 −2 0 2 0 −2 0 2 0 8 0 2 0 −2 0 2 0 −2 0 −8
21 1 1 −2 1 1 −2 −6 1 −2 1 1 −2 1 −6 −2 1 1 −2 1 1 12 1 1 −2 1 1 −2 −6 1 −2
22 1 −1 1 −1 1 −1 1 −1 1 −1 −10 −1 1 −1 1 −1 1 −1 1 −1 1 10 1 −1 1 −1 1 −1 1 −1
23 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 22 −1 −1 −1 −1 −1 −1 −1
24 0 0 0 4 0 0 0 −4 0 0 0 −8 0 0 0 −4 0 0 0 4 0 0 0 8 0 0 0 4 0 0
25 0 0 0 0 −5 0 0 0 0 −5 0 0 0 0 −5 0 0 0 0 −5 0 0 0 0 20 0 0 0 0 −5
26 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 −12 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 12 1 −1 1 −1
27 0 0 0 0 0 0 0 0 −9 0 0 0 0 0 0 0 0 −9 0 0 0 0 0 0 0 0 18 0 0 0
28 0 2 0 −2 0 2 0 −2 0 2 0 −2 0 −12 0 −2 0 2 0 −2 0 2 0 −2 0 2 0 12 0 2
29 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 28 −1
30 −1 1 2 1 4 −2 −1 1 2 −4 −1 −2 −1 1 −8 1 −1 −2 −1 −4 2 1 −1 −2 4 1 2 1 −1 8

Ramanujan expansions

If f(n) is an arithmetic function (i.e. a complex-valued function of the integers or natural numbers), then a convergent infinite series of the form:

f ( n ) = q = 1 a q c q ( n ) {\displaystyle f(n)=\sum _{q=1}^{\infty }a_{q}c_{q}(n)}

or of the form:

f ( q ) = n = 1 a n c q ( n ) {\displaystyle f(q)=\sum _{n=1}^{\infty }a_{n}c_{q}(n)}

where the akC, is called a Ramanujan expansion[12] of f(n).

Ramanujan found expansions of some of the well-known functions of number theory. All of these results are proved in an "elementary" manner (i.e. only using formal manipulations of series and the simplest results about convergence).[13][14][15]

The expansion of the zero function depends on a result from the analytic theory of prime numbers, namely that the series

n = 1 μ ( n ) n {\displaystyle \sum _{n=1}^{\infty }{\frac {\mu (n)}{n}}}

converges to 0, and the results for r(n) and r′(n) depend on theorems in an earlier paper.[16]

All the formulas in this section are from Ramanujan's 1918 paper.

Generating functions

The generating functions of the Ramanujan sums are Dirichlet series:

ζ ( s ) δ q μ ( q δ ) δ 1 s = n = 1 c q ( n ) n s {\displaystyle \zeta (s)\sum _{\delta \,\mid \,q}\mu \left({\frac {q}{\delta }}\right)\delta ^{1-s}=\sum _{n=1}^{\infty }{\frac {c_{q}(n)}{n^{s}}}}

is a generating function for the sequence cq(1), cq(2), ... where q is kept constant, and

σ r 1 ( n ) n r 1 ζ ( r ) = q = 1 c q ( n ) q r {\displaystyle {\frac {\sigma _{r-1}(n)}{n^{r-1}\zeta (r)}}=\sum _{q=1}^{\infty }{\frac {c_{q}(n)}{q^{r}}}}

is a generating function for the sequence c1(n), c2(n), ... where n is kept constant.

There is also the double Dirichlet series

ζ ( s ) ζ ( r + s 1 ) ζ ( r ) = q = 1 n = 1 c q ( n ) q r n s . {\displaystyle {\frac {\zeta (s)\zeta (r+s-1)}{\zeta (r)}}=\sum _{q=1}^{\infty }\sum _{n=1}^{\infty }{\frac {c_{q}(n)}{q^{r}n^{s}}}.}

σk(n)

σk(n) is the divisor function (i.e. the sum of the k-th powers of the divisors of n, including 1 and n). σ0(n), the number of divisors of n, is usually written d(n) and σ1(n), the sum of the divisors of n, is usually written σ(n).

If s > 0,

σ s ( n ) = n s ζ ( s + 1 ) ( c 1 ( n ) 1 s + 1 + c 2 ( n ) 2 s + 1 + c 3 ( n ) 3 s + 1 + ) σ s ( n ) = ζ ( s + 1 ) ( c 1 ( n ) 1 s + 1 + c 2 ( n ) 2 s + 1 + c 3 ( n ) 3 s + 1 + ) {\displaystyle {\begin{aligned}\sigma _{s}(n)&=n^{s}\zeta (s+1)\left({\frac {c_{1}(n)}{1^{s+1}}}+{\frac {c_{2}(n)}{2^{s+1}}}+{\frac {c_{3}(n)}{3^{s+1}}}+\cdots \right)\\\sigma _{-s}(n)&=\zeta (s+1)\left({\frac {c_{1}(n)}{1^{s+1}}}+{\frac {c_{2}(n)}{2^{s+1}}}+{\frac {c_{3}(n)}{3^{s+1}}}+\cdots \right)\end{aligned}}}

Setting s = 1 gives

σ ( n ) = π 2 6 n ( c 1 ( n ) 1 + c 2 ( n ) 4 + c 3 ( n ) 9 + ) . {\displaystyle \sigma (n)={\frac {\pi ^{2}}{6}}n\left({\frac {c_{1}(n)}{1}}+{\frac {c_{2}(n)}{4}}+{\frac {c_{3}(n)}{9}}+\cdots \right).}

If the Riemann hypothesis is true, and 1 2 < s < 1 2 , {\displaystyle -{\tfrac {1}{2}}<s<{\tfrac {1}{2}},}

σ s ( n ) = ζ ( 1 s ) ( c 1 ( n ) 1 1 s + c 2 ( n ) 2 1 s + c 3 ( n ) 3 1 s + ) = n s ζ ( 1 + s ) ( c 1 ( n ) 1 1 + s + c 2 ( n ) 2 1 + s + c 3 ( n ) 3 1 + s + ) . {\displaystyle \sigma _{s}(n)=\zeta (1-s)\left({\frac {c_{1}(n)}{1^{1-s}}}+{\frac {c_{2}(n)}{2^{1-s}}}+{\frac {c_{3}(n)}{3^{1-s}}}+\cdots \right)=n^{s}\zeta (1+s)\left({\frac {c_{1}(n)}{1^{1+s}}}+{\frac {c_{2}(n)}{2^{1+s}}}+{\frac {c_{3}(n)}{3^{1+s}}}+\cdots \right).}

d(n)

d(n) = σ0(n) is the number of divisors of n, including 1 and n itself.

d ( n ) = log 1 1 c 1 ( n ) + log 2 2 c 2 ( n ) + log 3 3 c 3 ( n ) + d ( n ) ( 2 γ + log n ) = log 2 1 1 c 1 ( n ) + log 2 2 2 c 2 ( n ) + log 2 3 3 c 3 ( n ) + {\displaystyle {\begin{aligned}-d(n)&={\frac {\log 1}{1}}c_{1}(n)+{\frac {\log 2}{2}}c_{2}(n)+{\frac {\log 3}{3}}c_{3}(n)+\cdots \\-d(n)(2\gamma +\log n)&={\frac {\log ^{2}1}{1}}c_{1}(n)+{\frac {\log ^{2}2}{2}}c_{2}(n)+{\frac {\log ^{2}3}{3}}c_{3}(n)+\cdots \end{aligned}}}

where γ = 0.5772... is the Euler–Mascheroni constant.

φ(n)

Euler's totient function φ(n) is the number of positive integers less than n and coprime to n. Ramanujan defines a generalization of it, if

n = p 1 a 1 p 2 a 2 p 3 a 3 {\displaystyle n=p_{1}^{a_{1}}p_{2}^{a_{2}}p_{3}^{a_{3}}\cdots }

is the prime factorization of n, and s is a complex number, let

φ s ( n ) = n s ( 1 p 1 s ) ( 1 p 2 s ) ( 1 p 3 s ) , {\displaystyle \varphi _{s}(n)=n^{s}(1-p_{1}^{-s})(1-p_{2}^{-s})(1-p_{3}^{-s})\cdots ,}

so that φ1(n) = φ(n) is Euler's function.[17]

He proves that

μ ( n ) n s φ s ( n ) ζ ( s ) = ν = 1 μ ( n ν ) ν s {\displaystyle {\frac {\mu (n)n^{s}}{\varphi _{s}(n)\zeta (s)}}=\sum _{\nu =1}^{\infty }{\frac {\mu (n\nu )}{\nu ^{s}}}}

and uses this to show that

φ s ( n ) ζ ( s + 1 ) n s = μ ( 1 ) c 1 ( n ) φ s + 1 ( 1 ) + μ ( 2 ) c 2 ( n ) φ s + 1 ( 2 ) + μ ( 3 ) c 3 ( n ) φ s + 1 ( 3 ) + . {\displaystyle {\frac {\varphi _{s}(n)\zeta (s+1)}{n^{s}}}={\frac {\mu (1)c_{1}(n)}{\varphi _{s+1}(1)}}+{\frac {\mu (2)c_{2}(n)}{\varphi _{s+1}(2)}}+{\frac {\mu (3)c_{3}(n)}{\varphi _{s+1}(3)}}+\cdots .}

Letting s = 1,

φ ( n ) = 6 π 2 n ( c 1 ( n ) c 2 ( n ) 2 2 1 c 3 ( n ) 3 2 1 c 5 ( n ) 5 2 1 + c 6 ( n ) ( 2 2 1 ) ( 3 2 1 ) c 7 ( n ) 7 2 1 + c 10 ( n ) ( 2 2 1 ) ( 5 2 1 ) ) . {\displaystyle \varphi (n)={\frac {6}{\pi ^{2}}}n\left(c_{1}(n)-{\frac {c_{2}(n)}{2^{2}-1}}-{\frac {c_{3}(n)}{3^{2}-1}}-{\frac {c_{5}(n)}{5^{2}-1}}+{\frac {c_{6}(n)}{(2^{2}-1)(3^{2}-1)}}-{\frac {c_{7}(n)}{7^{2}-1}}+{\frac {c_{10}(n)}{(2^{2}-1)(5^{2}-1)}}-\cdots \right).}

Note that the constant is the inverse[18] of the one in the formula for σ(n).

Λ(n)

Von Mangoldt's function Λ(n) = 0 unless n = pk is a power of a prime number, in which case it is the natural logarithm log p.

Λ ( m ) = c m ( 1 ) + 1 2 c m ( 2 ) + 1 3 c m ( 3 ) + {\displaystyle -\Lambda (m)=c_{m}(1)+{\frac {1}{2}}c_{m}(2)+{\frac {1}{3}}c_{m}(3)+\cdots }

Zero

For all n > 0,

0 = c 1 ( n ) + 1 2 c 2 ( n ) + 1 3 c 3 ( n ) + . {\displaystyle 0=c_{1}(n)+{\frac {1}{2}}c_{2}(n)+{\frac {1}{3}}c_{3}(n)+\cdots .}

This is equivalent to the prime number theorem.[19][20]

r2s(n) (sums of squares)

r2s(n) is the number of way of representing n as the sum of 2s squares, counting different orders and signs as different (e.g., r2(13) = 8, as 13 = (±2)2 + (±3)2 = (±3)2 + (±2)2.)

Ramanujan defines a function δ2s(n) and references a paper[21] in which he proved that r2s(n) = δ2s(n) for s = 1, 2, 3, and 4. For s > 4 he shows that δ2s(n) is a good approximation to r2s(n).

s = 1 has a special formula:

δ 2 ( n ) = π ( c 1 ( n ) 1 c 3 ( n ) 3 + c 5 ( n ) 5 ) . {\displaystyle \delta _{2}(n)=\pi \left({\frac {c_{1}(n)}{1}}-{\frac {c_{3}(n)}{3}}+{\frac {c_{5}(n)}{5}}-\cdots \right).}

In the following formulas the signs repeat with a period of 4.

δ 2 s ( n ) = π s n s 1 ( s 1 ) ! ( c 1 ( n ) 1 s + c 4 ( n ) 2 s + c 3 ( n ) 3 s + c 8 ( n ) 4 s + c 5 ( n ) 5 s + c 12 ( n ) 6 s + c 7 ( n ) 7 s + c 16 ( n ) 8 s + ) s 0 ( mod 4 ) δ 2 s ( n ) = π s n s 1 ( s 1 ) ! ( c 1 ( n ) 1 s c 4 ( n ) 2 s + c 3 ( n ) 3 s c 8 ( n ) 4 s + c 5 ( n ) 5 s c 12 ( n ) 6 s + c 7 ( n ) 7 s c 16 ( n ) 8 s + ) s 2 ( mod 4 ) δ 2 s ( n ) = π s n s 1 ( s 1 ) ! ( c 1 ( n ) 1 s + c 4 ( n ) 2 s c 3 ( n ) 3 s + c 8 ( n ) 4 s + c 5 ( n ) 5 s + c 12 ( n ) 6 s c 7 ( n ) 7 s + c 16 ( n ) 8 s + ) s 1 ( mod 4 )  and  s > 1 δ 2 s ( n ) = π s n s 1 ( s 1 ) ! ( c 1 ( n ) 1 s c 4 ( n ) 2 s c 3 ( n ) 3 s c 8 ( n ) 4 s + c 5 ( n ) 5 s c 12 ( n ) 6 s c 7 ( n ) 7 s c 16 ( n ) 8 s + ) s 3 ( mod 4 ) {\displaystyle {\begin{aligned}\delta _{2s}(n)&={\frac {\pi ^{s}n^{s-1}}{(s-1)!}}\left({\frac {c_{1}(n)}{1^{s}}}+{\frac {c_{4}(n)}{2^{s}}}+{\frac {c_{3}(n)}{3^{s}}}+{\frac {c_{8}(n)}{4^{s}}}+{\frac {c_{5}(n)}{5^{s}}}+{\frac {c_{12}(n)}{6^{s}}}+{\frac {c_{7}(n)}{7^{s}}}+{\frac {c_{16}(n)}{8^{s}}}+\cdots \right)&&s\equiv 0{\pmod {4}}\\[6pt]\delta _{2s}(n)&={\frac {\pi ^{s}n^{s-1}}{(s-1)!}}\left({\frac {c_{1}(n)}{1^{s}}}-{\frac {c_{4}(n)}{2^{s}}}+{\frac {c_{3}(n)}{3^{s}}}-{\frac {c_{8}(n)}{4^{s}}}+{\frac {c_{5}(n)}{5^{s}}}-{\frac {c_{12}(n)}{6^{s}}}+{\frac {c_{7}(n)}{7^{s}}}-{\frac {c_{16}(n)}{8^{s}}}+\cdots \right)&&s\equiv 2{\pmod {4}}\\[6pt]\delta _{2s}(n)&={\frac {\pi ^{s}n^{s-1}}{(s-1)!}}\left({\frac {c_{1}(n)}{1^{s}}}+{\frac {c_{4}(n)}{2^{s}}}-{\frac {c_{3}(n)}{3^{s}}}+{\frac {c_{8}(n)}{4^{s}}}+{\frac {c_{5}(n)}{5^{s}}}+{\frac {c_{12}(n)}{6^{s}}}-{\frac {c_{7}(n)}{7^{s}}}+{\frac {c_{16}(n)}{8^{s}}}+\cdots \right)&&s\equiv 1{\pmod {4}}{\text{ and }}s>1\\[6pt]\delta _{2s}(n)&={\frac {\pi ^{s}n^{s-1}}{(s-1)!}}\left({\frac {c_{1}(n)}{1^{s}}}-{\frac {c_{4}(n)}{2^{s}}}-{\frac {c_{3}(n)}{3^{s}}}-{\frac {c_{8}(n)}{4^{s}}}+{\frac {c_{5}(n)}{5^{s}}}-{\frac {c_{12}(n)}{6^{s}}}-{\frac {c_{7}(n)}{7^{s}}}-{\frac {c_{16}(n)}{8^{s}}}+\cdots \right)&&s\equiv 3{\pmod {4}}\\\end{aligned}}}

and therefore,

r 2 ( n ) = π ( c 1 ( n ) 1 c 3 ( n ) 3 + c 5 ( n ) 5 c 7 ( n ) 7 + c 11 ( n ) 11 c 13 ( n ) 13 + c 15 ( n ) 15 c 17 ( n ) 17 + ) r 4 ( n ) = π 2 n ( c 1 ( n ) 1 c 4 ( n ) 4 + c 3 ( n ) 9 c 8 ( n ) 16 + c 5 ( n ) 25 c 12 ( n ) 36 + c 7 ( n ) 49 c 16 ( n ) 64 + ) r 6 ( n ) = π 3 n 2 2 ( c 1 ( n ) 1 c 4 ( n ) 8 c 3 ( n ) 27 c 8 ( n ) 64 + c 5 ( n ) 125 c 12 ( n ) 216 c 7 ( n ) 343 c 16 ( n ) 512 + ) r 8 ( n ) = π 4 n 3 6 ( c 1 ( n ) 1 + c 4 ( n ) 16 + c 3 ( n ) 81 + c 8 ( n ) 256 + c 5 ( n ) 625 + c 12 ( n ) 1296 + c 7 ( n ) 2401 + c 16 ( n ) 4096 + ) {\displaystyle {\begin{aligned}r_{2}(n)&=\pi \left({\frac {c_{1}(n)}{1}}-{\frac {c_{3}(n)}{3}}+{\frac {c_{5}(n)}{5}}-{\frac {c_{7}(n)}{7}}+{\frac {c_{11}(n)}{11}}-{\frac {c_{13}(n)}{13}}+{\frac {c_{15}(n)}{15}}-{\frac {c_{17}(n)}{17}}+\cdots \right)\\[6pt]r_{4}(n)&=\pi ^{2}n\left({\frac {c_{1}(n)}{1}}-{\frac {c_{4}(n)}{4}}+{\frac {c_{3}(n)}{9}}-{\frac {c_{8}(n)}{16}}+{\frac {c_{5}(n)}{25}}-{\frac {c_{12}(n)}{36}}+{\frac {c_{7}(n)}{49}}-{\frac {c_{16}(n)}{64}}+\cdots \right)\\[6pt]r_{6}(n)&={\frac {\pi ^{3}n^{2}}{2}}\left({\frac {c_{1}(n)}{1}}-{\frac {c_{4}(n)}{8}}-{\frac {c_{3}(n)}{27}}-{\frac {c_{8}(n)}{64}}+{\frac {c_{5}(n)}{125}}-{\frac {c_{12}(n)}{216}}-{\frac {c_{7}(n)}{343}}-{\frac {c_{16}(n)}{512}}+\cdots \right)\\[6pt]r_{8}(n)&={\frac {\pi ^{4}n^{3}}{6}}\left({\frac {c_{1}(n)}{1}}+{\frac {c_{4}(n)}{16}}+{\frac {c_{3}(n)}{81}}+{\frac {c_{8}(n)}{256}}+{\frac {c_{5}(n)}{625}}+{\frac {c_{12}(n)}{1296}}+{\frac {c_{7}(n)}{2401}}+{\frac {c_{16}(n)}{4096}}+\cdots \right)\end{aligned}}}

r2s(n) (sums of triangles)

r 2 s ( n ) {\displaystyle r'_{2s}(n)} is the number of ways n can be represented as the sum of 2s triangular numbers (i.e. the numbers 1, 3 = 1 + 2, 6 = 1 + 2 + 3, 10 = 1 + 2 + 3 + 4, 15, ...; the n-th triangular number is given by the formula n(n + 1)/2.)

The analysis here is similar to that for squares. Ramanujan refers to the same paper as he did for the squares, where he showed that there is a function δ 2 s ( n ) {\displaystyle \delta '_{2s}(n)} such that r 2 s ( n ) = δ 2 s ( n ) {\displaystyle r'_{2s}(n)=\delta '_{2s}(n)} for s = 1, 2, 3, and 4, and that for s > 4, δ 2 s ( n ) {\displaystyle \delta '_{2s}(n)} is a good approximation to r 2 s ( n ) . {\displaystyle r'_{2s}(n).}

Again, s = 1 requires a special formula:

δ 2 ( n ) = π 4 ( c 1 ( 4 n + 1 ) 1 c 3 ( 4 n + 1 ) 3 + c 5 ( 4 n + 1 ) 5 c 7 ( 4 n + 1 ) 7 + ) . {\displaystyle \delta '_{2}(n)={\frac {\pi }{4}}\left({\frac {c_{1}(4n+1)}{1}}-{\frac {c_{3}(4n+1)}{3}}+{\frac {c_{5}(4n+1)}{5}}-{\frac {c_{7}(4n+1)}{7}}+\cdots \right).}

If s is a multiple of 4,

δ 2 s ( n ) = ( π 2 ) s ( s 1 ) ! ( n + s 4 ) s 1 ( c 1 ( n + s 4 ) 1 s + c 3 ( n + s 4 ) 3 s + c 5 ( n + s 4 ) 5 s + ) s 0 ( mod 4 ) δ 2 s ( n ) = ( π 2 ) s ( s 1 ) ! ( n + s 4 ) s 1 ( c 1 ( 2 n + s 2 ) 1 s + c 3 ( 2 n + s 2 ) 3 s + c 5 ( 2 n + s 2 ) 5 s + ) s 2 ( mod 4 ) δ 2 s ( n ) = ( π 2 ) s ( s 1 ) ! ( n + s 4 ) s 1 ( c 1 ( 4 n + s ) 1 s c 3 ( 4 n + s ) 3 s + c 5 ( 4 n + s ) 5 s ) s 1 ( mod 2 )  and  s > 1 {\displaystyle {\begin{aligned}\delta '_{2s}(n)&={\frac {({\frac {\pi }{2}})^{s}}{(s-1)!}}\left(n+{\frac {s}{4}}\right)^{s-1}\left({\frac {c_{1}(n+{\frac {s}{4}})}{1^{s}}}+{\frac {c_{3}(n+{\frac {s}{4}})}{3^{s}}}+{\frac {c_{5}(n+{\frac {s}{4}})}{5^{s}}}+\cdots \right)&&s\equiv 0{\pmod {4}}\\[6pt]\delta '_{2s}(n)&={\frac {({\frac {\pi }{2}})^{s}}{(s-1)!}}\left(n+{\frac {s}{4}}\right)^{s-1}\left({\frac {c_{1}(2n+{\frac {s}{2}})}{1^{s}}}+{\frac {c_{3}(2n+{\frac {s}{2}})}{3^{s}}}+{\frac {c_{5}(2n+{\frac {s}{2}})}{5^{s}}}+\cdots \right)&&s\equiv 2{\pmod {4}}\\[6pt]\delta '_{2s}(n)&={\frac {({\frac {\pi }{2}})^{s}}{(s-1)!}}\left(n+{\frac {s}{4}}\right)^{s-1}\left({\frac {c_{1}(4n+s)}{1^{s}}}-{\frac {c_{3}(4n+s)}{3^{s}}}+{\frac {c_{5}(4n+s)}{5^{s}}}-\cdots \right)&&s\equiv 1{\pmod {2}}{\text{ and }}s>1\end{aligned}}}

Therefore,

r 2 ( n ) = π 4 ( c 1 ( 4 n + 1 ) 1 c 3 ( 4 n + 1 ) 3 + c 5 ( 4 n + 1 ) 5 c 7 ( 4 n + 1 ) 7 + ) r 4 ( n ) = ( π 2 ) 2 ( n + 1 2 ) ( c 1 ( 2 n + 1 ) 1 + c 3 ( 2 n + 1 ) 9 + c 5 ( 2 n + 1 ) 25 + ) r 6 ( n ) = ( π 2 ) 3 2 ( n + 3 4 ) 2 ( c 1 ( 4 n + 3 ) 1 c 3 ( 4 n + 3 ) 27 + c 5 ( 4 n + 3 ) 125 ) r 8 ( n ) = ( π 2 ) 4 6 ( n + 1 ) 3 ( c 1 ( n + 1 ) 1 + c 3 ( n + 1 ) 81 + c 5 ( n + 1 ) 625 + ) {\displaystyle {\begin{aligned}r'_{2}(n)&={\frac {\pi }{4}}\left({\frac {c_{1}(4n+1)}{1}}-{\frac {c_{3}(4n+1)}{3}}+{\frac {c_{5}(4n+1)}{5}}-{\frac {c_{7}(4n+1)}{7}}+\cdots \right)\\[6pt]r'_{4}(n)&=\left({\frac {\pi }{2}}\right)^{2}\left(n+{\frac {1}{2}}\right)\left({\frac {c_{1}(2n+1)}{1}}+{\frac {c_{3}(2n+1)}{9}}+{\frac {c_{5}(2n+1)}{25}}+\cdots \right)\\[6pt]r'_{6}(n)&={\frac {({\frac {\pi }{2}})^{3}}{2}}\left(n+{\frac {3}{4}}\right)^{2}\left({\frac {c_{1}(4n+3)}{1}}-{\frac {c_{3}(4n+3)}{27}}+{\frac {c_{5}(4n+3)}{125}}-\cdots \right)\\[6pt]r'_{8}(n)&={\frac {({\frac {\pi }{2}})^{4}}{6}}(n+1)^{3}\left({\frac {c_{1}(n+1)}{1}}+{\frac {c_{3}(n+1)}{81}}+{\frac {c_{5}(n+1)}{625}}+\cdots \right)\end{aligned}}}

Sums

Let

T q ( n ) = c q ( 1 ) + c q ( 2 ) + + c q ( n ) U q ( n ) = T q ( n ) + 1 2 ϕ ( q ) {\displaystyle {\begin{aligned}T_{q}(n)&=c_{q}(1)+c_{q}(2)+\cdots +c_{q}(n)\\U_{q}(n)&=T_{q}(n)+{\tfrac {1}{2}}\phi (q)\end{aligned}}}

Then for s > 1,

σ s ( 1 ) + + σ s ( n ) = ζ ( s + 1 ) ( n + T 2 ( n ) 2 s + 1 + T 3 ( n ) 3 s + 1 + T 4 ( n ) 4 s + 1 + ) = ζ ( s + 1 ) ( n + 1 2 + U 2 ( n ) 2 s + 1 + U 3 ( n ) 3 s + 1 + U 4 ( n ) 4 s + 1 + ) 1 2 ζ ( s ) d ( 1 ) + + d ( n ) = T 2 ( n ) log 2 2 T 3 ( n ) log 3 3 T 4 ( n ) log 4 4 d ( 1 ) log 1 + + d ( n ) log n = T 2 ( n ) ( 2 γ log 2 log 2 2 ) 2 T 3 ( n ) ( 2 γ log 3 log 2 3 ) 3 T 4 ( n ) ( 2 γ log 4 log 2 4 ) 4 r 2 ( 1 ) + + r 2 ( n ) = π ( n T 3 ( n ) 3 + T 5 ( n ) 5 T 7 ( n ) 7 + ) {\displaystyle {\begin{aligned}\sigma _{-s}(1)+\cdots +\sigma _{-s}(n)&=\zeta (s+1)\left(n+{\frac {T_{2}(n)}{2^{s+1}}}+{\frac {T_{3}(n)}{3^{s+1}}}+{\frac {T_{4}(n)}{4^{s+1}}}+\cdots \right)\\&=\zeta (s+1)\left(n+{\tfrac {1}{2}}+{\frac {U_{2}(n)}{2^{s+1}}}+{\frac {U_{3}(n)}{3^{s+1}}}+{\frac {U_{4}(n)}{4^{s+1}}}+\cdots \right)-{\tfrac {1}{2}}\zeta (s)\\d(1)+\cdots +d(n)&=-{\frac {T_{2}(n)\log 2}{2}}-{\frac {T_{3}(n)\log 3}{3}}-{\frac {T_{4}(n)\log 4}{4}}-\cdots \\d(1)\log 1+\cdots +d(n)\log n&=-{\frac {T_{2}(n)(2\gamma \log 2-\log ^{2}2)}{2}}-{\frac {T_{3}(n)(2\gamma \log 3-\log ^{2}3)}{3}}-{\frac {T_{4}(n)(2\gamma \log 4-\log ^{2}4)}{4}}-\cdots \\r_{2}(1)+\cdots +r_{2}(n)&=\pi \left(n-{\frac {T_{3}(n)}{3}}+{\frac {T_{5}(n)}{5}}-{\frac {T_{7}(n)}{7}}+\cdots \right)\end{aligned}}}

See also

Notes

  1. ^ Ramanujan, On Certain Trigonometric Sums ...

    These sums are obviously of great interest, and a few of their properties have been discussed already. But, so far as I know, they have never been considered from the point of view which I adopt in this paper; and I believe that all the results which it contains are new.

    (Papers, p. 179). In a footnote cites pp. 360–370 of the Dirichlet–Dedekind Vorlesungen über Zahlentheorie, 4th ed.
  2. ^ Nathanson, ch. 8.
  3. ^ Hardy & Wright, Thms 65, 66
  4. ^ G. H. Hardy, P. V. Seshu Aiyar, & B. M. Wilson, notes to On certain trigonometrical sums ..., Ramanujan, Papers, p. 343
  5. ^ Schwarz & Spilken (1994) p.16
  6. ^ B. Berndt, commentary to On certain trigonometrical sums..., Ramanujan, Papers, p. 371
  7. ^ Knopfmacher, p. 196
  8. ^ Hardy & Wright, p. 243
  9. ^ Tóth, external links, eq. 6
  10. ^ Tóth, external links, eq. 17.
  11. ^ Tóth, external links, eq. 8.
  12. ^ B. Berndt, commentary to On certain trigonometrical sums..., Ramanujan, Papers, pp. 369–371
  13. ^ Ramanujan, On certain trigonometrical sums...

    The majority of my formulae are "elementary" in the technical sense of the word — they can (that is to say) be proved by a combination of processes involving only finite algebra and simple general theorems concerning infinite series

    (Papers, p. 179)
  14. ^ The theory of formal Dirichlet series is discussed in Hardy & Wright, § 17.6 and in Knopfmacher.
  15. ^ Knopfmacher, ch. 7, discusses Ramanujan expansions as a type of Fourier expansion in an inner product space which has the cq as an orthogonal basis.
  16. ^ Ramanujan, On Certain Arithmetical Functions
  17. ^ This is Jordan's totient function, Js(n).
  18. ^ Cf. Hardy & Wright, Thm. 329, which states that 6 π 2 < σ ( n ) ϕ ( n ) n 2 < 1. {\displaystyle \;{\frac {6}{\pi ^{2}}}<{\frac {\sigma (n)\phi (n)}{n^{2}}}<1.}
  19. ^ Hardy, Ramanujan, p. 141
  20. ^ B. Berndt, commentary to On certain trigonometrical sums..., Ramanujan, Papers, p. 371
  21. ^ Ramanujan, On Certain Arithmetical Functions

References

  • Hardy, G. H. (1999), Ramanujan: Twelve Lectures on Subjects Suggested by his Life and Work, Providence RI: AMS / Chelsea, ISBN 978-0-8218-2023-0
  • Hardy, G. H.; Wright, E. M. (1979) [1938]. An Introduction to the Theory of Numbers (5th ed.). Oxford: Clarendon Press. ISBN 0-19-853171-0. MR 0568909. Zbl 0423.10001.
  • Knopfmacher, John (1990) [1975], Abstract Analytic Number Theory (2nd ed.), New York: Dover, ISBN 0-486-66344-2, Zbl 0743.11002
  • Nathanson, Melvyn B. (1996), Additive Number Theory: the Classical Bases, Graduate Texts in Mathematics, vol. 164, Springer-Verlag, Section A.7, ISBN 0-387-94656-X, Zbl 0859.11002.
  • Nicol, C. A. (1962). "Some formulas involving Ramanujan sums". Can. J. Math. 14: 284–286. doi:10.4153/CJM-1962-019-8.
  • Ramanujan, Srinivasa (1918), "On Certain Trigonometric Sums and their Applications in the Theory of Numbers", Transactions of the Cambridge Philosophical Society, 22 (15): 259–276 (pp. 179–199 of his Collected Papers)
  • Ramanujan, Srinivasa (1916), "On Certain Arithmetical Functions", Transactions of the Cambridge Philosophical Society, 22 (9): 159–184 (pp. 136–163 of his Collected Papers)
  • Ramanujan, Srinivasa (2000), Collected Papers, Providence RI: AMS / Chelsea, ISBN 978-0-8218-2076-6
  • Schwarz, Wolfgang; Spilker, Jürgen (1994), Arithmetical Functions. An introduction to elementary and analytic properties of arithmetic functions and to some of their almost-periodic properties, London Mathematical Society Lecture Note Series, vol. 184, Cambridge University Press, ISBN 0-521-42725-8, Zbl 0807.11001

External links

  • Tóth, László (2011). "Sums of products of Ramanujan sums". Annali dell'universita' di Ferrara. 58: 183–197. arXiv:1104.1906. doi:10.1007/s11565-011-0143-3. S2CID 119134250.