Polar curve

The elliptic curve E : 4Y2Z = X3 − XZ2 in blue, and its polar curve (E) : 4Y2 = 2.7X2 − 2XZ − 0.9Z2 for the point Q = (0.9, 0) in red. The black lines show the tangents to E at the intersection points of E and its first polar with respect to Q meeting at Q.

In algebraic geometry, the first polar, or simply polar of an algebraic plane curve C of degree n with respect to a point Q is an algebraic curve of degree n−1 which contains every point of C whose tangent line passes through Q. It is used to investigate the relationship between the curve and its dual, for example in the derivation of the Plücker formulas.

Definition

Let C be defined in homogeneous coordinates by f(x, y, z) = 0 where f is a homogeneous polynomial of degree n, and let the homogeneous coordinates of Q be (abc). Define the operator

Δ Q = a x + b y + c z . {\displaystyle \Delta _{Q}=a{\partial \over \partial x}+b{\partial \over \partial y}+c{\partial \over \partial z}.}

Then ΔQf is a homogeneous polynomial of degree n−1 and ΔQf(x, y, z) = 0 defines a curve of degree n−1 called the first polar of C with respect of Q.

If P=(pqr) is a non-singular point on the curve C then the equation of the tangent at P is

x f x ( p , q , r ) + y f y ( p , q , r ) + z f z ( p , q , r ) = 0. {\displaystyle x{\partial f \over \partial x}(p,q,r)+y{\partial f \over \partial y}(p,q,r)+z{\partial f \over \partial z}(p,q,r)=0.}

In particular, P is on the intersection of C and its first polar with respect to Q if and only if Q is on the tangent to C at P. For a double point of C, the partial derivatives of f are all 0 so the first polar contains these points as well.

Class of a curve

The class of C may be defined as the number of tangents that may be drawn to C from a point not on C (counting multiplicities and including imaginary tangents). Each of these tangents touches C at one of the points of intersection of C and the first polar, and by Bézout's theorem there are at most n(n−1) of these. This puts an upper bound of n(n−1) on the class of a curve of degree n. The class may be computed exactly by counting the number and type of singular points on C (see Plücker formula).

Higher polars

The p-th polar of a C for a natural number p is defined as ΔQpf(x, y, z) = 0. This is a curve of degree np. When p is n−1 the p-th polar is a line called the polar line of C with respect to Q. Similarly, when p is n−2 the curve is called the polar conic of C.

Using Taylor series in several variables and exploiting homogeneity, fap, λbq, λcr) can be expanded in two ways as

μ n f ( p , q , r ) + λ μ n 1 Δ Q f ( p , q , r ) + 1 2 λ 2 μ n 2 Δ Q 2 f ( p , q , r ) + {\displaystyle \mu ^{n}f(p,q,r)+\lambda \mu ^{n-1}\Delta _{Q}f(p,q,r)+{\frac {1}{2}}\lambda ^{2}\mu ^{n-2}\Delta _{Q}^{2}f(p,q,r)+\dots }

and

λ n f ( a , b , c ) + μ λ n 1 Δ P f ( a , b , c ) + 1 2 μ 2 λ n 2 Δ P 2 f ( a , b , c ) + . {\displaystyle \lambda ^{n}f(a,b,c)+\mu \lambda ^{n-1}\Delta _{P}f(a,b,c)+{\frac {1}{2}}\mu ^{2}\lambda ^{n-2}\Delta _{P}^{2}f(a,b,c)+\dots .}

Comparing coefficients of λpμnp shows that

1 p ! Δ Q p f ( p , q , r ) = 1 ( n p ) ! Δ P n p f ( a , b , c ) . {\displaystyle {\frac {1}{p!}}\Delta _{Q}^{p}f(p,q,r)={\frac {1}{(n-p)!}}\Delta _{P}^{n-p}f(a,b,c).}

In particular, the p-th polar of C with respect to Q is the locus of points P so that the (np)-th polar of C with respect to P passes through Q.[1]

Poles

If the polar line of C with respect to a point Q is a line L, then Q is said to be a pole of L. A given line has (n−1)2 poles (counting multiplicities etc.) where n is the degree of C. To see this, pick two points P and Q on L. The locus of points whose polar lines pass through P is the first polar of P and this is a curve of degree n1. Similarly, the locus of points whose polar lines pass through Q is the first polar of Q and this is also a curve of degree n1. The polar line of a point is L if and only if it contains both P and Q, so the poles of L are exactly the points of intersection of the two first polars. By Bézout's theorem these curves have (n−1)2 points of intersection and these are the poles of L.[2]

The Hessian

For a given point Q=(abc), the polar conic is the locus of points P so that Q is on the second polar of P. In other words, the equation of the polar conic is

Δ ( x , y , z ) 2 f ( a , b , c ) = x 2 2 f x 2 ( a , b , c ) + 2 x y 2 f x y ( a , b , c ) + = 0. {\displaystyle \Delta _{(x,y,z)}^{2}f(a,b,c)=x^{2}{\partial ^{2}f \over \partial x^{2}}(a,b,c)+2xy{\partial ^{2}f \over \partial x\partial y}(a,b,c)+\dots =0.}

The conic is degenerate if and only if the determinant of the Hessian of f,

H ( f ) = [ 2 f x 2 2 f x y 2 f x z 2 f y x 2 f y 2 2 f y z 2 f z x 2 f z y 2 f z 2 ] , {\displaystyle H(f)={\begin{bmatrix}{\frac {\partial ^{2}f}{\partial x^{2}}}&{\frac {\partial ^{2}f}{\partial x\,\partial y}}&{\frac {\partial ^{2}f}{\partial x\,\partial z}}\\\\{\frac {\partial ^{2}f}{\partial y\,\partial x}}&{\frac {\partial ^{2}f}{\partial y^{2}}}&{\frac {\partial ^{2}f}{\partial y\,\partial z}}\\\\{\frac {\partial ^{2}f}{\partial z\,\partial x}}&{\frac {\partial ^{2}f}{\partial z\,\partial y}}&{\frac {\partial ^{2}f}{\partial z^{2}}}\end{bmatrix}},}

vanishes. Therefore, the equation |H(f)|=0 defines a curve, the locus of points whose polar conics are degenerate, of degree 3(n2) called the Hessian curve of C.

See also

  • Polar hypersurface
  • Pole and polar

References

  1. ^ Follows Salmon pp. 49-50 but essentially the same argument with different notation is given in Basset pp. 16-17.
  2. ^ Basset p. 20, Salmon p. 51
  • Basset, Alfred Barnard (1901). An Elementary Treatise on Cubic and Quartic Curves. Deighton Bell & Co. pp. 16ff.
  • Salmon, George (1879). Higher Plane Curves. Hodges, Foster, and Figgis. pp. 49ff.
  • Section 1.2 of Fulton, Introduction to intersection theory in algebraic geometry, CBMS, AMS, 1984.
  • Ivanov, A.B. (2001) [1994], "Polar", Encyclopedia of Mathematics, EMS Press
  • Ivanov, A.B. (2001) [1994], "Hessian (algebraic curve)", Encyclopedia of Mathematics, EMS Press
  • v
  • t
  • e
Rational curvesElliptic curves
Analytic theory
Arithmetic theory
Applications
Higher genusPlane curvesRiemann surfacesConstructionsStructure of curves
Divisors on curves
Moduli
Morphisms
Singularities
Vector bundles