Mittag-Leffler polynomials

In mathematics, the Mittag-Leffler polynomials are the polynomials gn(x) or Mn(x) studied by Mittag-Leffler (1891).

Mn(x) is a special case of the Meixner polynomial Mn(x;b,c) at b = 0, c = -1.

Definition and examples

Generating functions

The Mittag-Leffler polynomials are defined respectively by the generating functions

n = 0 g n ( x ) t n := 1 2 ( 1 + t 1 t ) x {\displaystyle \displaystyle \sum _{n=0}^{\infty }g_{n}(x)t^{n}:={\frac {1}{2}}{\Bigl (}{\frac {1+t}{1-t}}{\Bigr )}^{x}} and
n = 0 M n ( x ) t n n ! := ( 1 + t 1 t ) x = ( 1 + t ) x ( 1 t ) x = exp ( 2 x  artanh  t ) . {\displaystyle \displaystyle \sum _{n=0}^{\infty }M_{n}(x){\frac {t^{n}}{n!}}:={\Bigl (}{\frac {1+t}{1-t}}{\Bigr )}^{x}=(1+t)^{x}(1-t)^{-x}=\exp(2x{\text{ artanh }}t).}

They also have the bivariate generating function[1]

n = 1 m = 1 g n ( m ) x m y n = x y ( 1 x ) ( 1 x y x y ) . {\displaystyle \displaystyle \sum _{n=1}^{\infty }\sum _{m=1}^{\infty }g_{n}(m)x^{m}y^{n}={\frac {xy}{(1-x)(1-x-y-xy)}}.}

Examples

The first few polynomials are given in the following table. The coefficients of the numerators of the g n ( x ) {\displaystyle g_{n}(x)} can be found in the OEIS,[2] though without any references, and the coefficients of the M n ( x ) {\displaystyle M_{n}(x)} are in the OEIS[3] as well.

n gn(x) Mn(x)
0 1 2 {\displaystyle {\frac {1}{2}}} 1 {\displaystyle 1}
1 x {\displaystyle x} 2 x {\displaystyle 2x}
2 x 2 {\displaystyle x^{2}} 4 x 2 {\displaystyle 4x^{2}}
3 1 3 ( x + 2 x 3 ) {\displaystyle {\frac {1}{3}}(x+2x^{3})} 8 x 3 + 4 x {\displaystyle 8x^{3}+4x}
4 1 3 ( 2 x 2 + x 4 ) {\displaystyle {\frac {1}{3}}(2x^{2}+x^{4})} 16 x 4 + 32 x 2 {\displaystyle 16x^{4}+32x^{2}}
5 1 15 ( 3 x + 10 x 3 + 2 x 5 ) {\displaystyle {\frac {1}{15}}(3x+10x^{3}+2x^{5})} 32 x 5 + 160 x 3 + 48 x {\displaystyle 32x^{5}+160x^{3}+48x}
6 1 45 ( 23 x 2 + 20 x 4 + 2 x 6 ) {\displaystyle {\frac {1}{45}}(23x^{2}+20x^{4}+2x^{6})} 64 x 6 + 640 x 4 + 736 x 2 {\displaystyle 64x^{6}+640x^{4}+736x^{2}}
7 1 315 ( 45 x + 196 x 3 + 70 x 5 + 4 x 7 ) {\displaystyle {\frac {1}{315}}(45x+196x^{3}+70x^{5}+4x^{7})} 128 x 7 + 2240 x 5 + 6272 x 3 + 1440 x {\displaystyle 128x^{7}+2240x^{5}+6272x^{3}+1440x}
8 1 315 ( 132 x 2 + 154 x 4 + 28 x 6 + x 8 ) {\displaystyle {\frac {1}{315}}(132x^{2}+154x^{4}+28x^{6}+x^{8})} 256 x 8 + 7168 x 6 + 39424 x 4 + 33792 x 2 {\displaystyle 256x^{8}+7168x^{6}+39424x^{4}+33792x^{2}}
9 1 2835 ( 315 x + 1636 x 3 + 798 x 5 + 84 x 7 + 2 x 9 ) {\displaystyle {\frac {1}{2835}}(315x+1636x^{3}+798x^{5}+84x^{7}+2x^{9})} 512 x 9 + 21504 x 7 + 204288 x 5 + 418816 x 3 + 80640 x {\displaystyle 512x^{9}+21504x^{7}+204288x^{5}+418816x^{3}+80640x}
10 1 14175 ( 5067 x 2 + 7180 x 4 + 1806 x 6 + 120 x 8 + 2 x 10 ) {\displaystyle {\frac {1}{14175}}(5067x^{2}+7180x^{4}+1806x^{6}+120x^{8}+2x^{10})} 1024 x 10 + 61440 x 8 + 924672 x 6 + 3676160 x 4 + 2594304 x 2 {\displaystyle 1024x^{10}+61440x^{8}+924672x^{6}+3676160x^{4}+2594304x^{2}}

Properties

The polynomials are related by M n ( x ) = 2 n ! g n ( x ) {\displaystyle M_{n}(x)=2\cdot {n!}\,g_{n}(x)} and we have g n ( 1 ) = 1 {\displaystyle g_{n}(1)=1} for n 1 {\displaystyle n\geqslant 1} . Also g 2 k ( 1 2 ) = g 2 k + 1 ( 1 2 ) = 1 2 ( 2 k 1 ) ! ! ( 2 k ) ! ! = 1 2 1 3 ( 2 k 1 ) 2 4 ( 2 k ) {\displaystyle g_{2k}({\frac {1}{2}})=g_{2k+1}({\frac {1}{2}})={\frac {1}{2}}{\frac {(2k-1)!!}{(2k)!!}}={\frac {1}{2}}\cdot {\frac {1\cdot 3\cdots (2k-1)}{2\cdot 4\cdots (2k)}}} .

Explicit formulas

Explicit formulas are

g n ( x ) = k = 1 n 2 k 1 ( n 1 n k ) ( x k ) = k = 0 n 1 2 k ( n 1 k ) ( x k + 1 ) {\displaystyle g_{n}(x)=\sum _{k=1}^{n}2^{k-1}{\binom {n-1}{n-k}}{\binom {x}{k}}=\sum _{k=0}^{n-1}2^{k}{\binom {n-1}{k}}{\binom {x}{k+1}}}
g n ( x ) = k = 0 n 1 ( n 1 k ) ( k + x n ) {\displaystyle g_{n}(x)=\sum _{k=0}^{n-1}{\binom {n-1}{k}}{\binom {k+x}{n}}}
g n ( m ) = 1 2 k = 0 m ( m k ) ( n 1 + m k m 1 ) = 1 2 k = 0 min ( n , m ) m n + m k ( n + m k k , n k , m k ) {\displaystyle g_{n}(m)={\frac {1}{2}}\sum _{k=0}^{m}{\binom {m}{k}}{\binom {n-1+m-k}{m-1}}={\frac {1}{2}}\sum _{k=0}^{\min(n,m)}{\frac {m}{n+m-k}}{\binom {n+m-k}{k,n-k,m-k}}}

(the last one immediately shows n g n ( m ) = m g m ( n ) {\displaystyle ng_{n}(m)=mg_{m}(n)} , a kind of reflection formula), and

M n ( x ) = ( n 1 ) ! k = 1 n k 2 k ( n k ) ( x k ) {\displaystyle M_{n}(x)=(n-1)!\sum _{k=1}^{n}k2^{k}{\binom {n}{k}}{\binom {x}{k}}} , which can be also written as
M n ( x ) = k = 1 n 2 k ( n k ) ( n 1 ) n k ( x ) k {\displaystyle M_{n}(x)=\sum _{k=1}^{n}2^{k}{\binom {n}{k}}(n-1)_{n-k}(x)_{k}} , where ( x ) n = n ! ( x n ) = x ( x 1 ) ( x n + 1 ) {\displaystyle (x)_{n}=n!{\binom {x}{n}}=x(x-1)\cdots (x-n+1)} denotes the falling factorial.

In terms of the Gaussian hypergeometric function, we have[4]

g n ( x ) = x 2 F 1 ( 1 n , 1 x ; 2 ; 2 ) . {\displaystyle g_{n}(x)=x\!\cdot {}_{2}\!F_{1}(1-n,1-x;2;2).}

Reflection formula

As stated above, for m , n N {\displaystyle m,n\in \mathbb {N} } , we have the reflection formula n g n ( m ) = m g m ( n ) {\displaystyle ng_{n}(m)=mg_{m}(n)} .

Recursion formulas

The polynomials M n ( x ) {\displaystyle M_{n}(x)} can be defined recursively by

M n ( x ) = 2 x M n 1 ( x ) + ( n 1 ) ( n 2 ) M n 2 ( x ) {\displaystyle M_{n}(x)=2xM_{n-1}(x)+(n-1)(n-2)M_{n-2}(x)} , starting with M 1 ( x ) = 0 {\displaystyle M_{-1}(x)=0} and M 0 ( x ) = 1 {\displaystyle M_{0}(x)=1} .

Another recursion formula, which produces an odd one from the preceding even ones and vice versa, is

M n + 1 ( x ) = 2 x k = 0 n / 2 n ! ( n 2 k ) ! M n 2 k ( x ) {\displaystyle M_{n+1}(x)=2x\sum _{k=0}^{\lfloor n/2\rfloor }{\frac {n!}{(n-2k)!}}M_{n-2k}(x)} , again starting with M 0 ( x ) = 1 {\displaystyle M_{0}(x)=1} .


As for the g n ( x ) {\displaystyle g_{n}(x)} , we have several different recursion formulas:

( 1 ) g n ( x + 1 ) g n 1 ( x + 1 ) = g n ( x ) + g n 1 ( x ) {\displaystyle \displaystyle (1)\quad g_{n}(x+1)-g_{n-1}(x+1)=g_{n}(x)+g_{n-1}(x)}
( 2 ) ( n + 1 ) g n + 1 ( x ) ( n 1 ) g n 1 ( x ) = 2 x g n ( x ) {\displaystyle \displaystyle (2)\quad (n+1)g_{n+1}(x)-(n-1)g_{n-1}(x)=2xg_{n}(x)}
( 3 ) x ( g n ( x + 1 ) g n ( x 1 ) ) = 2 n g n ( x ) {\displaystyle (3)\quad x{\Bigl (}g_{n}(x+1)-g_{n}(x-1){\Bigr )}=2ng_{n}(x)}
( 4 ) g n + 1 ( m ) = g n ( m ) + 2 k = 1 m 1 g n ( k ) = g n ( 1 ) + g n ( 2 ) + + g n ( m ) + g n ( m 1 ) + + g n ( 1 ) {\displaystyle (4)\quad g_{n+1}(m)=g_{n}(m)+2\sum _{k=1}^{m-1}g_{n}(k)=g_{n}(1)+g_{n}(2)+\cdots +g_{n}(m)+g_{n}(m-1)+\cdots +g_{n}(1)}

Concerning recursion formula (3), the polynomial g n ( x ) {\displaystyle g_{n}(x)} is the unique polynomial solution of the difference equation x ( f ( x + 1 ) f ( x 1 ) ) = 2 n f ( x ) {\displaystyle x(f(x+1)-f(x-1))=2nf(x)} , normalized so that f ( 1 ) = 1 {\displaystyle f(1)=1} .[5] Further note that (2) and (3) are dual to each other in the sense that for x N {\displaystyle x\in \mathbb {N} } , we can apply the reflection formula to one of the identities and then swap x {\displaystyle x} and n {\displaystyle n} to obtain the other one. (As the g n ( x ) {\displaystyle g_{n}(x)} are polynomials, the validity extends from natural to all real values of x {\displaystyle x} .)

Initial values

The table of the initial values of g n ( m ) {\displaystyle g_{n}(m)} (these values are also called the "figurate numbers for the n-dimensional cross polytopes" in the OEIS[6]) may illustrate the recursion formula (1), which can be taken to mean that each entry is the sum of the three neighboring entries: to its left, above and above left, e.g. g 5 ( 3 ) = 51 = 33 + 8 + 10 {\displaystyle g_{5}(3)=51=33+8+10} . It also illustrates the reflection formula n g n ( m ) = m g m ( n ) {\displaystyle ng_{n}(m)=mg_{m}(n)} with respect to the main diagonal, e.g. 3 44 = 4 33 {\displaystyle 3\cdot 44=4\cdot 33} .

n
m
1 2 3 4 5 6 7 8 9 10
1 1 1 1 1 1 1 1 1 1 1
2 2 4 6 8 10 12 14 16 18
3 3 9 19 33 51 73 99 129
4 4 16 44 96 180 304 476
5 5 25 85 225 501 985
6 6 36 146 456 1182
7 7 49 231 833
8 8 64 344
9 9 81
10 10

Orthogonality relations

For m , n N {\displaystyle m,n\in \mathbb {N} } the following orthogonality relation holds:[7]

g n ( i y ) g m ( i y ) y sinh π y d y = 1 2 n δ m n . {\displaystyle \int _{-\infty }^{\infty }{\frac {g_{n}(-iy)g_{m}(iy)}{y\sinh \pi y}}dy={\frac {1}{2n}}\delta _{mn}.}

(Note that this is not a complex integral. As each g n {\displaystyle g_{n}} is an even or an odd polynomial, the imaginary arguments just produce alternating signs for their coefficients. Moreover, if m {\displaystyle m} and n {\displaystyle n} have different parity, the integral vanishes trivially.)

Binomial identity

Being a Sheffer sequence of binomial type, the Mittag-Leffler polynomials M n ( x ) {\displaystyle M_{n}(x)} also satisfy the binomial identity[8]

M n ( x + y ) = k = 0 n ( n k ) M k ( x ) M n k ( y ) {\displaystyle M_{n}(x+y)=\sum _{k=0}^{n}{\binom {n}{k}}M_{k}(x)M_{n-k}(y)} .

Integral representations

Based on the representation as a hypergeometric function, there are several ways of representing g n ( z ) {\displaystyle g_{n}(z)} for | z | < 1 {\displaystyle |z|<1} directly as integrals,[9] some of them being even valid for complex z {\displaystyle z} , e.g.

( 26 ) g n ( z ) = sin ( π z ) 2 π 1 1 t n 1 ( 1 + t 1 t ) z d t {\displaystyle (26)\qquad g_{n}(z)={\frac {\sin(\pi z)}{2\pi }}\int _{-1}^{1}t^{n-1}{\Bigl (}{\frac {1+t}{1-t}}{\Bigr )}^{z}dt}
( 27 ) g n ( z ) = sin ( π z ) 2 π e u z ( tanh u 2 ) n sinh u d u {\displaystyle (27)\qquad g_{n}(z)={\frac {\sin(\pi z)}{2\pi }}\int _{-\infty }^{\infty }e^{uz}{\frac {(\tanh {\frac {u}{2}})^{n}}{\sinh u}}du}
( 32 ) g n ( z ) = 1 π 0 π cot z ( u 2 ) cos ( π z 2 ) cos ( n u ) d u {\displaystyle (32)\qquad g_{n}(z)={\frac {1}{\pi }}\int _{0}^{\pi }\cot ^{z}({\frac {u}{2}})\cos({\frac {\pi z}{2}})\cos(nu)du}
( 33 ) g n ( z ) = 1 π 0 π cot z ( u 2 ) sin ( π z 2 ) sin ( n u ) d u {\displaystyle (33)\qquad g_{n}(z)={\frac {1}{\pi }}\int _{0}^{\pi }\cot ^{z}({\frac {u}{2}})\sin({\frac {\pi z}{2}})\sin(nu)du}
( 34 ) g n ( z ) = 1 2 π 0 2 π ( 1 + e i t ) z ( 2 + e i t ) n 1 e i n t d t {\displaystyle (34)\qquad g_{n}(z)={\frac {1}{2\pi }}\int _{0}^{2\pi }(1+e^{it})^{z}(2+e^{it})^{n-1}e^{-int}dt} .

Closed forms of integral families

There are several families of integrals with closed-form expressions in terms of zeta values where the coefficients of the Mittag-Leffler polynomials occur as coefficients. All those integrals can be written in a form containing either a factor tan ± n {\displaystyle \tan ^{\pm n}} or tanh ± n {\displaystyle \tanh ^{\pm n}} , and the degree of the Mittag-Leffler polynomial varies with n {\displaystyle n} . One way to work out those integrals is to obtain for them the corresponding recursion formulas as for the Mittag-Leffler polynomials using integration by parts.

1. For instance,[10] define for n m 2 {\displaystyle n\geqslant m\geqslant 2}

I ( n , m ) := 0 1 artanh n x x m d x = 0 1 log n / 2 ( 1 + x 1 x ) d x x m = 0 z n coth m 2 z sinh 2 z d z . {\displaystyle I(n,m):=\int _{0}^{1}{\dfrac {{\text{artanh}}^{n}x}{x^{m}}}dx=\int _{0}^{1}\log ^{n/2}{\Bigl (}{\dfrac {1+x}{1-x}}{\Bigr )}{\dfrac {dx}{x^{m}}}=\int _{0}^{\infty }z^{n}{\dfrac {\coth ^{m-2}z}{\sinh ^{2}z}}dz.}

These integrals have the closed form

( 1 ) I ( n , m ) = n ! 2 n 1 ζ n + 1   g m 1 ( 1 ζ ) {\displaystyle (1)\quad I(n,m)={\frac {n!}{2^{n-1}}}\zeta ^{n+1}~g_{m-1}({\frac {1}{\zeta }})}

in umbral notation, meaning that after expanding the polynomial in ζ {\displaystyle \zeta } , each power ζ k {\displaystyle \zeta ^{k}} has to be replaced by the zeta value ζ ( k ) {\displaystyle \zeta (k)} . E.g. from g 6 ( x ) = 1 45 ( 23 x 2 + 20 x 4 + 2 x 6 )   {\displaystyle g_{6}(x)={\frac {1}{45}}(23x^{2}+20x^{4}+2x^{6})\ } we get   I ( n , 7 ) = n ! 2 n 1 23   ζ ( n 1 ) + 20   ζ ( n 3 ) + 2   ζ ( n 5 ) 45   {\displaystyle \ I(n,7)={\frac {n!}{2^{n-1}}}{\frac {23~\zeta (n-1)+20~\zeta (n-3)+2~\zeta (n-5)}{45}}\ } for n 7 {\displaystyle n\geqslant 7} .

2. Likewise take for n m 2 {\displaystyle n\geqslant m\geqslant 2}

J ( n , m ) := 1 arcoth n x x m d x = 1 log n / 2 ( x + 1 x 1 ) d x x m = 0 z n tanh m 2 z cosh 2 z d z . {\displaystyle J(n,m):=\int _{1}^{\infty }{\dfrac {{\text{arcoth}}^{n}x}{x^{m}}}dx=\int _{1}^{\infty }\log ^{n/2}{\Bigl (}{\dfrac {x+1}{x-1}}{\Bigr )}{\dfrac {dx}{x^{m}}}=\int _{0}^{\infty }z^{n}{\dfrac {\tanh ^{m-2}z}{\cosh ^{2}z}}dz.}

In umbral notation, where after expanding, η k {\displaystyle \eta ^{k}} has to be replaced by the Dirichlet eta function η ( k ) := ( 1 2 1 k ) ζ ( k ) {\displaystyle \eta (k):=\left(1-2^{1-k}\right)\zeta (k)} , those have the closed form

( 2 ) J ( n , m ) = n ! 2 n 1 η n + 1   g m 1 ( 1 η ) {\displaystyle (2)\quad J(n,m)={\frac {n!}{2^{n-1}}}\eta ^{n+1}~g_{m-1}({\frac {1}{\eta }})} .

3. The following[11] holds for n m {\displaystyle n\geqslant m} with the same umbral notation for ζ {\displaystyle \zeta } and η {\displaystyle \eta } , and completing by continuity η ( 1 ) := ln 2 {\displaystyle \eta (1):=\ln 2} .

( 3 ) 0 π / 2 x n tan m x d x = cos ( m 2 π ) ( π / 2 ) n + 1 n + 1 + cos ( m n 1 2 π ) n !   m 2 n ζ n + 2 g m ( 1 ζ ) + v = 0 n cos ( m v 1 2 π ) n !   m   π n v ( n v ) !   2 n η n + 2 g m ( 1 η ) . {\displaystyle (3)\quad \int \limits _{0}^{\pi /2}{\frac {x^{n}}{\tan ^{m}x}}dx=\cos {\Bigl (}{\frac {m}{2}}\pi {\Bigr )}{\frac {(\pi /2)^{n+1}}{n+1}}+\cos {\Bigl (}{\frac {m-n-1}{2}}\pi {\Bigr )}{\frac {n!~m}{2^{n}}}\zeta ^{n+2}g_{m}({\frac {1}{\zeta }})+\sum \limits _{v=0}^{n}\cos {\Bigl (}{\frac {m-v-1}{2}}\pi {\Bigr )}{\frac {n!~m~\pi ^{n-v}}{(n-v)!~2^{n}}}\eta ^{n+2}g_{m}({\frac {1}{\eta }}).}

Note that for n m 2 {\displaystyle n\geqslant m\geqslant 2} , this also yields a closed form for the integrals

0 arctan n x x m d x = 0 π / 2 x n tan m x d x + 0 π / 2 x n tan m 2 x d x . {\displaystyle \int \limits _{0}^{\infty }{\frac {\arctan ^{n}x}{x^{m}}}dx=\int \limits _{0}^{\pi /2}{\frac {x^{n}}{\tan ^{m}x}}dx+\int \limits _{0}^{\pi /2}{\frac {x^{n}}{\tan ^{m-2}x}}dx.}

4. For n m 2 {\displaystyle n\geqslant m\geqslant 2} , define[12] K ( n , m ) := 0 tanh n ( x ) x m d x {\displaystyle \quad K(n,m):=\int \limits _{0}^{\infty }{\dfrac {\tanh ^{n}(x)}{x^{m}}}dx} .

If n + m {\displaystyle n+m} is even and we define h k := ( 1 ) k 1 2 ( k 1 ) ! ( 2 k 1 ) ζ ( k ) 2 k 1 π k 1 {\displaystyle h_{k}:=(-1)^{\frac {k-1}{2}}{\frac {(k-1)!(2^{k}-1)\zeta (k)}{2^{k-1}\pi ^{k-1}}}} , we have in umbral notation, i.e. replacing h k {\displaystyle h^{k}} by h k {\displaystyle h_{k}} ,

( 4 ) K ( n , m ) := 0 tanh n ( x ) x m d x = n 2 m 1 ( m 1 ) ! ( h ) m 1 g n ( h ) . {\displaystyle (4)\quad K(n,m):=\int \limits _{0}^{\infty }{\dfrac {\tanh ^{n}(x)}{x^{m}}}dx={\dfrac {n\cdot 2^{m-1}}{(m-1)!}}(-h)^{m-1}g_{n}(h).}

Note that only odd zeta values (odd k {\displaystyle k} ) occur here (unless the denominators are cast as even zeta values), e.g.

K ( 5 , 3 ) = 2 3 ( 3 h 3 + 10 h 5 + 2 h 7 ) = 7 ζ ( 3 ) π 2 + 310 ζ ( 5 ) π 4 1905 ζ ( 7 ) π 6 , {\displaystyle K(5,3)=-{\frac {2}{3}}(3h_{3}+10h_{5}+2h_{7})=-7{\frac {\zeta (3)}{\pi ^{2}}}+310{\frac {\zeta (5)}{\pi ^{4}}}-1905{\frac {\zeta (7)}{\pi ^{6}}},}
K ( 6 , 2 ) = 4 15 ( 23 h 3 + 20 h 5 + 2 h 7 ) , K ( 6 , 4 ) = 4 45 ( 23 h 5 + 20 h 7 + 2 h 9 ) . {\displaystyle K(6,2)={\frac {4}{15}}(23h_{3}+20h_{5}+2h_{7}),\quad K(6,4)={\frac {4}{45}}(23h_{5}+20h_{7}+2h_{9}).}

5. If n + m {\displaystyle n+m} is odd, the same integral is much more involved to evaluate, including the initial one 0 tanh 3 ( x ) x 2 d x {\displaystyle \int \limits _{0}^{\infty }{\dfrac {\tanh ^{3}(x)}{x^{2}}}dx} . Yet it turns out that the pattern subsists if we define[13] s k := η ( k ) = 2 k + 1 ζ ( k ) ln 2 ( 2 k + 1 1 ) ζ ( k ) {\displaystyle s_{k}:=\eta '(-k)=2^{k+1}\zeta (-k)\ln 2-(2^{k+1}-1)\zeta '(-k)} , equivalently s k = ζ ( k ) ζ ( k ) η ( k ) + ζ ( k ) η ( 1 ) η ( k ) η ( 1 ) {\displaystyle s_{k}={\frac {\zeta (-k)}{\zeta '(-k)}}\eta (-k)+\zeta (-k)\eta (1)-\eta (-k)\eta (1)} . Then K ( n , m ) {\displaystyle K(n,m)} has the following closed form in umbral notation, replacing s k {\displaystyle s^{k}} by s k {\displaystyle s_{k}} :

( 5 ) K ( n , m ) = 0 tanh n ( x ) x m d x = n 2 m ( m 1 ) ! ( s ) m 2 g n ( s ) {\displaystyle (5)\quad K(n,m)=\int \limits _{0}^{\infty }{\dfrac {\tanh ^{n}(x)}{x^{m}}}dx={\frac {n\cdot 2^{m}}{(m-1)!}}(-s)^{m-2}g_{n}(s)} , e.g.
K ( 5 , 4 ) = 8 9 ( 3 s 3 + 10 s 5 + 2 s 7 ) , K ( 6 , 3 ) = 8 15 ( 23 s 3 + 20 s 5 + 2 s 7 ) , K ( 6 , 5 ) = 8 45 ( 23 s 5 + 20 s 7 + 2 s 9 ) . {\displaystyle K(5,4)={\frac {8}{9}}(3s_{3}+10s_{5}+2s_{7}),\quad K(6,3)=-{\frac {8}{15}}(23s_{3}+20s_{5}+2s_{7}),\quad K(6,5)=-{\frac {8}{45}}(23s_{5}+20s_{7}+2s_{9}).}

Note that by virtue of the logarithmic derivative ζ ζ ( s ) + ζ ζ ( 1 s ) = log π 1 2 Γ Γ ( s 2 ) 1 2 Γ Γ ( 1 s 2 ) {\displaystyle {\frac {\zeta '}{\zeta }}(s)+{\frac {\zeta '}{\zeta }}(1-s)=\log \pi -{\frac {1}{2}}{\frac {\Gamma '}{\Gamma }}\left({\frac {s}{2}}\right)-{\frac {1}{2}}{\frac {\Gamma '}{\Gamma }}\left({\frac {1-s}{2}}\right)} of Riemann's functional equation, taken after applying Euler's reflection formula,[14] these expressions in terms of the s k {\displaystyle s_{k}} can be written in terms of ζ ( 2 j ) ζ ( 2 j ) {\displaystyle {\frac {\zeta '(2j)}{\zeta (2j)}}} , e.g.

K ( 5 , 4 ) = 8 9 ( 3 s 3 + 10 s 5 + 2 s 7 ) = 1 9 { 1643 420 16 315 ln 2 + 3 ζ ( 4 ) ζ ( 4 ) 20 ζ ( 6 ) ζ ( 6 ) + 17 ζ ( 8 ) ζ ( 8 ) } . {\displaystyle K(5,4)={\frac {8}{9}}(3s_{3}+10s_{5}+2s_{7})={\frac {1}{9}}\left\{{\frac {1643}{420}}-{\frac {16}{315}}\ln 2+3{\frac {\zeta '(4)}{\zeta (4)}}-20{\frac {\zeta '(6)}{\zeta (6)}}+17{\frac {\zeta '(8)}{\zeta (8)}}\right\}.}

6. For n < m {\displaystyle n<m} , the same integral K ( n , m ) {\displaystyle K(n,m)} diverges because the integrand behaves like x n m {\displaystyle x^{n-m}} for x 0 {\displaystyle x\searrow 0} . But the difference of two such integrals with corresponding degree differences is well-defined and exhibits very similar patterns, e.g.

( 6 ) K ( n 1 , n ) K ( n , n + 1 ) = 0 ( tanh n 1 ( x ) x n tanh n ( x ) x n + 1 ) d x = 1 n + ( n + 1 ) 2 n ( n 1 ) ! s n 2 g n ( s ) {\displaystyle (6)\quad K(n-1,n)-K(n,n+1)=\int \limits _{0}^{\infty }\left({\dfrac {\tanh ^{n-1}(x)}{x^{n}}}-{\dfrac {\tanh ^{n}(x)}{x^{n+1}}}\right)dx=-{\frac {1}{n}}+{\frac {(n+1)\cdot 2^{n}}{(n-1)!}}s^{n-2}g_{n}(s)} .

See also

References

  1. ^ see the formula section of OEIS A142978
  2. ^ see OEIS A064984
  3. ^ see OEIS A137513
  4. ^ Özmen, Nejla & Nihal, Yılmaz (2019). "On The Mittag-Leffler Polynomials and Deformed Mittag-Leffler Polynomials". {{cite journal}}: Cite journal requires |journal= (help)
  5. ^ see the comment section of OEIS A142983
  6. ^ see OEIS A142978
  7. ^ Stankovic, Miomir S.; Marinkovic, Sladjana D. & Rajkovic, Predrag M. (2010). "Deformed Mittag–Leffler Polynomials". arXiv:1007.3612. {{cite journal}}: Cite journal requires |journal= (help)
  8. ^ Mathworld entry "Mittag-Leffler Polynomial"
  9. ^ Bateman, H. (1940). "The polynomial of Mittag-Leffler" (PDF). Proceedings of the National Academy of Sciences of the United States of America. 26 (8): 491–496. Bibcode:1940PNAS...26..491B. doi:10.1073/pnas.26.8.491. ISSN 0027-8424. JSTOR 86958. MR 0002381. PMC 1078216. PMID 16588390.
  10. ^ see at the end of this question on Mathoverflow
  11. ^ answer on math.stackexchange
  12. ^ similar to this question on Mathoverflow
  13. ^ method used in this answer on Mathoverflow
  14. ^ or see formula (14) in https://mathworld.wolfram.com/RiemannZetaFunction.html
  • Bateman, H. (1940), "The polynomial of Mittag-Leffler" (PDF), Proceedings of the National Academy of Sciences of the United States of America, 26 (8): 491–496, Bibcode:1940PNAS...26..491B, doi:10.1073/pnas.26.8.491, ISSN 0027-8424, JSTOR 86958, MR 0002381, PMC 1078216, PMID 16588390
  • Mittag-Leffler, G. (1891), "Sur la représentasion analytique des intégrales et des invariants d'une équation différentielle linéaire et homogène", Acta Mathematica (in French), XV: 1–32, doi:10.1007/BF02392600, ISSN 0001-5962, JFM 23.0327.01
  • Stankovic, Miomir S.; Marinkovic, Sladjana D.; Rajkovic, Predrag M. (2010), Deformed Mittag–Leffler Polynomials, arXiv:1007.3612