Markov operator

In probability theory and ergodic theory, a Markov operator is an operator on a certain function space that conserves the mass (the so-called Markov property). If the underlying measurable space is topologically sufficiently rich enough, then the Markov operator admits a kernel representation. Markov operators can be linear or non-linear. Closely related to Markov operators is the Markov semigroup.[1]

The definition of Markov operators is not entirely consistent in the literature. Markov operators are named after the Russian mathematician Andrey Markov.

Definitions

Markov operator

Let ( E , F ) {\displaystyle (E,{\mathcal {F}})} be a measurable space and V {\displaystyle V} a set of real, measurable functions f : ( E , F ) ( R , B ( R ) ) {\displaystyle f:(E,{\mathcal {F}})\to (\mathbb {R} ,{\mathcal {B}}(\mathbb {R} ))} .

A linear operator P {\displaystyle P} on V {\displaystyle V} is a Markov operator if the following is true[1]: 9–12 

  1. P {\displaystyle P} maps bounded, measurable function on bounded, measurable functions.
  2. Let 1 {\displaystyle \mathbf {1} } be the constant function x 1 {\displaystyle x\mapsto 1} , then P ( 1 ) = 1 {\displaystyle P(\mathbf {1} )=\mathbf {1} } holds. (conservation of mass / Markov property)
  3. If f 0 {\displaystyle f\geq 0} then P f 0 {\displaystyle Pf\geq 0} . (conservation of positivity)

Alternative definitions

Some authors define the operators on the Lp spaces as P : L p ( X ) L p ( Y ) {\displaystyle P:L^{p}(X)\to L^{p}(Y)} and replace the first condition (bounded, measurable functions on such) with the property[2][3]

P f Y = f X , f L p ( X ) {\displaystyle \|Pf\|_{Y}=\|f\|_{X},\quad \forall f\in L^{p}(X)}

Markov semigroup

Let P = { P t } t 0 {\displaystyle {\mathcal {P}}=\{P_{t}\}_{t\geq 0}} be a family of Markov operators defined on the set of bounded, measurables function on ( E , F ) {\displaystyle (E,{\mathcal {F}})} . Then P {\displaystyle {\mathcal {P}}} is a Markov semigroup when the following is true[1]: 12 

  1. P 0 = Id {\displaystyle P_{0}=\operatorname {Id} } .
  2. P t + s = P t P s {\displaystyle P_{t+s}=P_{t}\circ P_{s}} for all t , s 0 {\displaystyle t,s\geq 0} .
  3. There exist a σ-finite measure μ {\displaystyle \mu } on ( E , F ) {\displaystyle (E,{\mathcal {F}})} that is invariant under P {\displaystyle {\mathcal {P}}} , that means for all bounded, positive and measurable functions f : E R {\displaystyle f:E\to \mathbb {R} } and every t 0 {\displaystyle t\geq 0} the following holds
E P t f d μ = E f d μ {\displaystyle \int _{E}P_{t}f\mathrm {d} \mu =\int _{E}f\mathrm {d} \mu } .

Dual semigroup

Each Markov semigroup P = { P t } t 0 {\displaystyle {\mathcal {P}}=\{P_{t}\}_{t\geq 0}} induces a dual semigroup ( P t ) t 0 {\displaystyle (P_{t}^{*})_{t\geq 0}} through

E P t f d μ = E f d ( P t μ ) . {\displaystyle \int _{E}P_{t}f\mathrm {d\mu } =\int _{E}f\mathrm {d} \left(P_{t}^{*}\mu \right).}

If μ {\displaystyle \mu } is invariant under P {\displaystyle {\mathcal {P}}} then P t μ = μ {\displaystyle P_{t}^{*}\mu =\mu } .

Infinitesimal generator of the semigroup

Let { P t } t 0 {\displaystyle \{P_{t}\}_{t\geq 0}} be a family of bounded, linear Markov operators on the Hilbert space L 2 ( μ ) {\displaystyle L^{2}(\mu )} , where μ {\displaystyle \mu } is an invariant measure. The infinitesimal generator L {\displaystyle L} of the Markov semigroup P = { P t } t 0 {\displaystyle {\mathcal {P}}=\{P_{t}\}_{t\geq 0}} is defined as

L f = lim t 0 P t f f t , {\displaystyle Lf=\lim \limits _{t\downarrow 0}{\frac {P_{t}f-f}{t}},}

and the domain D ( L ) {\displaystyle D(L)} is the L 2 ( μ ) {\displaystyle L^{2}(\mu )} -space of all such functions where this limit exists and is in L 2 ( μ ) {\displaystyle L^{2}(\mu )} again.[1]: 18 [4]

D ( L ) = { f L 2 ( μ ) : lim t 0 P t f f t  exists and is in  L 2 ( μ ) } . {\displaystyle D(L)=\left\{f\in L^{2}(\mu ):\lim \limits _{t\downarrow 0}{\frac {P_{t}f-f}{t}}{\text{ exists and is in }}L^{2}(\mu )\right\}.}

The carré du champ operator Γ {\displaystyle \Gamma } measuers how far L {\displaystyle L} is from being a derivation.

Kernel representation of a Markov operator

A Markov operator P t {\displaystyle P_{t}} has a kernel representation

( P t f ) ( x ) = E f ( y ) p t ( x , d y ) , x E , {\displaystyle (P_{t}f)(x)=\int _{E}f(y)p_{t}(x,\mathrm {d} y),\quad x\in E,}

with respect to some probability kernel p t ( x , A ) {\displaystyle p_{t}(x,A)} , if the underlying measurable space ( E , F ) {\displaystyle (E,{\mathcal {F}})} has the following sufficient topological properties:

  1. Each probability measure μ : F × F [ 0 , 1 ] {\displaystyle \mu :{\mathcal {F}}\times {\mathcal {F}}\to [0,1]} can be decomposed as μ ( d x , d y ) = k ( x , d y ) μ 1 ( d x ) {\displaystyle \mu (\mathrm {d} x,\mathrm {d} y)=k(x,\mathrm {d} y)\mu _{1}(\mathrm {d} x)} , where μ 1 {\displaystyle \mu _{1}} is the projection onto the first component and k ( x , d y ) {\displaystyle k(x,\mathrm {d} y)} is a probability kernel.
  2. There exist a countable family that generates the σ-algebra F {\displaystyle {\mathcal {F}}} .

If one defines now a σ-finite measure on ( E , F ) {\displaystyle (E,{\mathcal {F}})} then it is possible to prove that ever Markov operator P {\displaystyle P} admits such a kernel representation with respect to k ( x , d y ) {\displaystyle k(x,\mathrm {d} y)} .[1]: 7–13 

Literature

  • Bakry, Dominique; Gentil, Ivan; Ledoux, Michel. Analysis and Geometry of Markov Diffusion Operators. Springer Cham. doi:10.1007/978-3-319-00227-9.
  • Eisner, Tanja; Farkas, Bálint; Haase, Markus; Nagel, Rainer (2015). "Markov Operators". Operator Theoretic Aspects of Ergodic Theory. Graduate Texts in Mathematics. Vol. 2727. Cham: Springer. doi:10.1007/978-3-319-16898-2.
  • Wang, Fengyu (2006). Functional Inequalities Markov Semigroups and Spectral Theory. Ukraine: Elsevier Science.

References

  1. ^ a b c d e Bakry, Dominique; Gentil, Ivan; Ledoux, Michel. Analysis and Geometry of Markov Diffusion Operators. Springer Cham. doi:10.1007/978-3-319-00227-9.
  2. ^ Eisner, Tanja; Farkas, Bálint; Haase, Markus; Nagel, Rainer (2015). "Markov Operators". Operator Theoretic Aspects of Ergodic Theory. Graduate Texts in Mathematics. Vol. 2727. Cham: Springer. p. 249. doi:10.1007/978-3-319-16898-2.
  3. ^ Wang, Fengyu (2006). Functional Inequalities Markov Semigroups and Spectral Theory. Ukraine: Elsevier Science. p. 3.
  4. ^ Wang, Fengyu (2006). Functional Inequalities Markov Semigroups and Spectral Theory. Ukraine: Elsevier Science. p. 1.