List of definite integrals

Part of a series of articles about
Calculus
a b f ( t ) d t = f ( b ) f ( a ) {\displaystyle \int _{a}^{b}f'(t)\,dt=f(b)-f(a)}
  • Rolle's theorem
  • Mean value theorem
  • Inverse function theorem
Differential
Definitions
Concepts
  • Differentiation notation
  • Second derivative
  • Implicit differentiation
  • Logarithmic differentiation
  • Related rates
  • Taylor's theorem
Rules and identities
  • v
  • t
  • e

In mathematics, the definite integral

a b f ( x ) d x {\displaystyle \int _{a}^{b}f(x)\,dx}

is the area of the region in the xy-plane bounded by the graph of f, the x-axis, and the lines x = a and x = b, such that area above the x-axis adds to the total, and that below the x-axis subtracts from the total.

The fundamental theorem of calculus establishes the relationship between indefinite and definite integrals and introduces a technique for evaluating definite integrals.

If the interval is infinite the definite integral is called an improper integral and defined by using appropriate limiting procedures. for example:

a f ( x ) d x = lim b [ a b f ( x ) d x ] {\displaystyle \int _{a}^{\infty }f(x)\,dx=\lim _{b\to \infty }\left[\int _{a}^{b}f(x)\,dx\right]}

A constant, such pi, that may be defined by the integral of an algebraic function over an algebraic domain is known as a period.

The following is a list of some of the most common or interesting definite integrals. For a list of indefinite integrals see List of indefinite integrals.

Definite integrals involving rational or irrational expressions

0 d x 1 + x p = π / p sin ( π / p ) for  ( p ) > 1 {\displaystyle \int _{0}^{\infty }{\frac {dx}{1+x^{p}}}={\frac {\pi /p}{\sin(\pi /p)}}\quad {\text{for }}\Re (p)>1}
0 x p 1 d x 1 + x = π sin ( p π ) for  0 < p < 1 {\displaystyle \int _{0}^{\infty }{\frac {x^{p-1}dx}{1+x}}={\frac {\pi }{\sin(p\pi )}}\quad {\text{for }}0<p<1}
0 x m d x x n + a n = π a m n + 1 n sin ( m + 1 n π ) for  0 < m + 1 < n {\displaystyle \int _{0}^{\infty }{\frac {x^{m}dx}{x^{n}+a^{n}}}={\frac {\pi a^{m-n+1}}{n\sin \left({\dfrac {m+1}{n}}\pi \right)}}\quad {\text{for }}0<m+1<n}
0 x m d x 1 + 2 x cos β + x 2 = π sin ( m π ) sin ( m β ) sin ( β ) {\displaystyle \int _{0}^{\infty }{\frac {x^{m}dx}{1+2x\cos \beta +x^{2}}}={\frac {\pi }{\sin(m\pi )}}\cdot {\frac {\sin(m\beta )}{\sin(\beta )}}}
0 a d x a 2 x 2 = π 2 {\displaystyle \int _{0}^{a}{\frac {dx}{\sqrt {a^{2}-x^{2}}}}={\frac {\pi }{2}}}
0 a a 2 x 2 d x = π a 2 4 {\displaystyle \int _{0}^{a}{\sqrt {a^{2}-x^{2}}}dx={\frac {\pi a^{2}}{4}}}
0 a x m ( a n x n ) p d x = a m + 1 + n p Γ ( m + 1 n ) Γ ( p + 1 ) n Γ ( m + 1 n + p + 1 ) {\displaystyle \int _{0}^{a}x^{m}(a^{n}-x^{n})^{p}\,dx={\frac {a^{m+1+np}\Gamma \left({\dfrac {m+1}{n}}\right)\Gamma (p+1)}{n\Gamma \left({\dfrac {m+1}{n}}+p+1\right)}}}
0 x m d x ( x n + a n ) r = ( 1 ) r 1 π a m + 1 n r Γ ( m + 1 n ) n sin ( m + 1 n π ) ( r 1 ) ! Γ ( m + 1 n r + 1 ) for  n ( r 2 ) < m + 1 < n r {\displaystyle \int _{0}^{\infty }{\frac {x^{m}dx}{({x^{n}+a^{n})}^{r}}}={\frac {(-1)^{r-1}\pi a^{m+1-nr}\Gamma \left({\dfrac {m+1}{n}}\right)}{n\sin \left({\dfrac {m+1}{n}}\pi \right)(r-1)!\,\Gamma \left({\dfrac {m+1}{n}}-r+1\right)}}\quad {\text{for }}n(r-2)<m+1<nr}

Definite integrals involving trigonometric functions

0 π sin ( m x ) sin ( n x ) d x = { 0 if  m n π 2 if  m = n for  m , n  positive integers {\displaystyle \int _{0}^{\pi }\sin(mx)\sin(nx)dx={\begin{cases}0&{\text{if }}m\neq n\\\\{\dfrac {\pi }{2}}&{\text{if }}m=n\end{cases}}\quad {\text{for }}m,n{\text{ positive integers}}}
0 π cos ( m x ) cos ( n x ) d x = { 0 if  m n π 2 if  m = n for  m , n  positive integers {\displaystyle \int _{0}^{\pi }\cos(mx)\cos(nx)dx={\begin{cases}0&{\text{if }}m\neq n\\\\{\dfrac {\pi }{2}}&{\text{if }}m=n\end{cases}}\quad {\text{for }}m,n{\text{ positive integers}}}
0 π sin ( m x ) cos ( n x ) d x = { 0 if  m + n  even 2 m m 2 n 2 if  m + n  odd for  m , n  integers . {\displaystyle \int _{0}^{\pi }\sin(mx)\cos(nx)dx={\begin{cases}0&{\text{if }}m+n{\text{ even}}\\\\{\dfrac {2m}{m^{2}-n^{2}}}&{\text{if }}m+n{\text{ odd}}\end{cases}}\quad {\text{for }}m,n{\text{ integers}}.}
0 π 2 sin 2 ( x ) d x = 0 π 2 cos 2 ( x ) d x = π 4 {\displaystyle \int _{0}^{\frac {\pi }{2}}\sin ^{2}(x)dx=\int _{0}^{\frac {\pi }{2}}\cos ^{2}(x)dx={\frac {\pi }{4}}}
0 π 2 sin 2 m ( x ) d x = 0 π 2 cos 2 m ( x ) d x = 1 × 3 × 5 × × ( 2 m 1 ) 2 × 4 × 6 × × 2 m π 2 for  m = 1 , 2 , 3 {\displaystyle \int _{0}^{\frac {\pi }{2}}\sin ^{2m}(x)dx=\int _{0}^{\frac {\pi }{2}}\cos ^{2m}(x)dx={\frac {1\times 3\times 5\times \cdots \times (2m-1)}{2\times 4\times 6\times \cdots \times 2m}}\cdot {\frac {\pi }{2}}\quad {\text{for }}m=1,2,3\ldots }
0 π 2 sin 2 m + 1 ( x ) d x = 0 π 2 cos 2 m + 1 ( x ) d x = 2 × 4 × 6 × × 2 m 1 × 3 × 5 × × ( 2 m + 1 ) for  m = 1 , 2 , 3 {\displaystyle \int _{0}^{\frac {\pi }{2}}\sin ^{2m+1}(x)dx=\int _{0}^{\frac {\pi }{2}}\cos ^{2m+1}(x)dx={\frac {2\times 4\times 6\times \cdots \times 2m}{1\times 3\times 5\times \cdots \times (2m+1)}}\quad {\text{for }}m=1,2,3\ldots }
0 π 2 sin 2 p 1 ( x ) cos 2 q 1 ( x ) d x = Γ ( p ) Γ ( q ) 2 Γ ( p + q ) = 1 2 B ( p , q ) {\displaystyle \int _{0}^{\frac {\pi }{2}}\sin ^{2p-1}(x)\cos ^{2q-1}(x)dx={\frac {\Gamma (p)\Gamma (q)}{2\Gamma (p+q)}}={\frac {1}{2}}{\text{B}}(p,q)}
0 sin ( p x ) x d x = { π 2 if  p > 0 0 if  p = 0 π 2 if  p < 0 {\displaystyle \int _{0}^{\infty }{\frac {\sin(px)}{x}}dx={\begin{cases}{\dfrac {\pi }{2}}&{\text{if }}p>0\\\\0&{\text{if }}p=0\\\\-{\dfrac {\pi }{2}}&{\text{if }}p<0\end{cases}}} (see Dirichlet integral)
0 sin p x cos q x x   d x = { 0  if  q > p > 0 π 2  if  0 < q < p π 4  if  p = q > 0 {\displaystyle \int _{0}^{\infty }{\frac {\sin px\cos qx}{x}}\ dx={\begin{cases}0&{\text{ if }}q>p>0\\\\{\dfrac {\pi }{2}}&{\text{ if }}0<q<p\\\\{\dfrac {\pi }{4}}&{\text{ if }}p=q>0\end{cases}}}
0 sin p x sin q x x 2   d x = { π p 2  if  0 < p q π q 2  if  0 < q p {\displaystyle \int _{0}^{\infty }{\frac {\sin px\sin qx}{x^{2}}}\ dx={\begin{cases}{\dfrac {\pi p}{2}}&{\text{ if }}0<p\leq q\\\\{\dfrac {\pi q}{2}}&{\text{ if }}0<q\leq p\end{cases}}}
0 sin 2 p x x 2   d x = π p 2 {\displaystyle \int _{0}^{\infty }{\frac {\sin ^{2}px}{x^{2}}}\ dx={\frac {\pi p}{2}}}
0 1 cos p x x 2   d x = π p 2 {\displaystyle \int _{0}^{\infty }{\frac {1-\cos px}{x^{2}}}\ dx={\frac {\pi p}{2}}}
0 cos p x cos q x x   d x = ln q p {\displaystyle \int _{0}^{\infty }{\frac {\cos px-\cos qx}{x}}\ dx=\ln {\frac {q}{p}}}
0 cos p x cos q x x 2   d x = π ( q p ) 2 {\displaystyle \int _{0}^{\infty }{\frac {\cos px-\cos qx}{x^{2}}}\ dx={\frac {\pi (q-p)}{2}}}
0 cos m x x 2 + a 2   d x = π 2 a e m a {\displaystyle \int _{0}^{\infty }{\frac {\cos mx}{x^{2}+a^{2}}}\ dx={\frac {\pi }{2a}}e^{-ma}}
0 x sin m x x 2 + a 2   d x = π 2 e m a {\displaystyle \int _{0}^{\infty }{\frac {x\sin mx}{x^{2}+a^{2}}}\ dx={\frac {\pi }{2}}e^{-ma}}
0 sin m x x ( x 2 + a 2 )   d x = π 2 a 2 ( 1 e m a ) {\displaystyle \int _{0}^{\infty }{\frac {\sin mx}{x(x^{2}+a^{2})}}\ dx={\frac {\pi }{2a^{2}}}\left(1-e^{-ma}\right)}
0 2 π d x a + b sin x = 2 π a 2 b 2 {\displaystyle \int _{0}^{2\pi }{\frac {dx}{a+b\sin x}}={\frac {2\pi }{\sqrt {a^{2}-b^{2}}}}}
0 2 π d x a + b cos x = 2 π a 2 b 2 {\displaystyle \int _{0}^{2\pi }{\frac {dx}{a+b\cos x}}={\frac {2\pi }{\sqrt {a^{2}-b^{2}}}}}
0 π 2 d x a + b cos x = cos 1 ( b a ) a 2 b 2 {\displaystyle \int _{0}^{\frac {\pi }{2}}{\frac {dx}{a+b\cos x}}={\frac {\cos ^{-1}\left({\dfrac {b}{a}}\right)}{\sqrt {a^{2}-b^{2}}}}}
0 2 π d x ( a + b sin x ) 2 = 0 2 π d x ( a + b cos x ) 2 = 2 π a ( a 2 b 2 ) 3 / 2 {\displaystyle \int _{0}^{2\pi }{\frac {dx}{(a+b\sin x)^{2}}}=\int _{0}^{2\pi }{\frac {dx}{(a+b\cos x)^{2}}}={\frac {2\pi a}{(a^{2}-b^{2})^{3/2}}}}
0 2 π d x 1 2 a cos x + a 2 = 2 π 1 a 2 for  0 < a < 1 {\displaystyle \int _{0}^{2\pi }{\frac {dx}{1-2a\cos x+a^{2}}}={\frac {2\pi }{1-a^{2}}}\quad {\text{for }}0<a<1}
0 π x sin x   d x 1 2 a cos x + a 2 = { π a ln | 1 + a | if  | a | < 1 π a ln | 1 + 1 a | if  | a | > 1 {\displaystyle \int _{0}^{\pi }{\frac {x\sin x\ dx}{1-2a\cos x+a^{2}}}={\begin{cases}{\dfrac {\pi }{a}}\ln \left|1+a\right|&{\text{if }}|a|<1\\\\{\dfrac {\pi }{a}}\ln \left|1+{\dfrac {1}{a}}\right|&{\text{if }}|a|>1\end{cases}}}
0 π cos m x   d x 1 2 a cos x + a 2 = π a m 1 a 2 for  a 2 < 1   ,   m = 0 , 1 , 2 , {\displaystyle \int _{0}^{\pi }{\frac {\cos mx\ dx}{1-2a\cos x+a^{2}}}={\frac {\pi a^{m}}{1-a^{2}}}\quad {\text{for }}a^{2}<1\ ,\ m=0,1,2,\dots }
0 sin a x 2   d x = 0 cos a x 2 = 1 2 π 2 a {\displaystyle \int _{0}^{\infty }\sin ax^{2}\ dx=\int _{0}^{\infty }\cos ax^{2}={\frac {1}{2}}{\sqrt {\frac {\pi }{2a}}}}
0 sin a x n = 1 n a 1 / n Γ ( 1 n ) sin π 2 n for  n > 1 {\displaystyle \int _{0}^{\infty }\sin ax^{n}={\frac {1}{na^{1/n}}}\Gamma \left({\frac {1}{n}}\right)\sin {\frac {\pi }{2n}}\quad {\text{for }}n>1}
0 cos a x n = 1 n a 1 / n Γ ( 1 n ) cos π 2 n for  n > 1 {\displaystyle \int _{0}^{\infty }\cos ax^{n}={\frac {1}{na^{1/n}}}\Gamma \left({\frac {1}{n}}\right)\cos {\frac {\pi }{2n}}\quad {\text{for }}n>1}
0 sin x x   d x = 0 cos x x   d x = π 2 {\displaystyle \int _{0}^{\infty }{\frac {\sin x}{\sqrt {x}}}\ dx=\int _{0}^{\infty }{\frac {\cos x}{\sqrt {x}}}\ dx={\sqrt {\frac {\pi }{2}}}}
0 sin x x p   d x = π 2 Γ ( p ) sin ( p π 2 ) for  0 < p < 1 {\displaystyle \int _{0}^{\infty }{\frac {\sin x}{x^{p}}}\ dx={\frac {\pi }{2\Gamma (p)\sin \left({\dfrac {p\pi }{2}}\right)}}\quad {\text{for }}0<p<1}
0 cos x x p   d x = π 2 Γ ( p ) cos ( p π 2 ) for  0 < p < 1 {\displaystyle \int _{0}^{\infty }{\frac {\cos x}{x^{p}}}\ dx={\frac {\pi }{2\Gamma (p)\cos \left({\dfrac {p\pi }{2}}\right)}}\quad {\text{for }}0<p<1}
0 sin a x 2 cos 2 b x   d x = 1 2 π 2 a ( cos b 2 a sin b 2 a ) {\displaystyle \int _{0}^{\infty }\sin ax^{2}\cos 2bx\ dx={\frac {1}{2}}{\sqrt {\frac {\pi }{2a}}}\left(\cos {\frac {b^{2}}{a}}-\sin {\frac {b^{2}}{a}}\right)}
0 cos a x 2 cos 2 b x   d x = 1 2 π 2 a ( cos b 2 a + sin b 2 a ) {\displaystyle \int _{0}^{\infty }\cos ax^{2}\cos 2bx\ dx={\frac {1}{2}}{\sqrt {\frac {\pi }{2a}}}\left(\cos {\frac {b^{2}}{a}}+\sin {\frac {b^{2}}{a}}\right)}

Definite integrals involving exponential functions

0 x e x d x = 1 2 π {\displaystyle \int _{0}^{\infty }{\sqrt {x}}\,e^{-x}\,dx={\frac {1}{2}}{\sqrt {\pi }}} (see also Gamma function)
0 e a x cos b x d x = a a 2 + b 2 {\displaystyle \int _{0}^{\infty }e^{-ax}\cos bx\,dx={\frac {a}{a^{2}+b^{2}}}}
0 e a x sin b x d x = b a 2 + b 2 {\displaystyle \int _{0}^{\infty }e^{-ax}\sin bx\,dx={\frac {b}{a^{2}+b^{2}}}}
0 e a x sin b x x d x = tan 1 b a {\displaystyle \int _{0}^{\infty }{\frac {{}e^{-ax}\sin bx}{x}}\,dx=\tan ^{-1}{\frac {b}{a}}}
0 e a x e b x x d x = ln b a {\displaystyle \int _{0}^{\infty }{\frac {e^{-ax}-e^{-bx}}{x}}\,dx=\ln {\frac {b}{a}}}
0 e a x cos ( b x ) x d x = ln b a {\displaystyle \int _{0}^{\infty }{\frac {e^{-ax}-\cos(bx)}{x}}\,dx=\ln {\frac {b}{a}}}
0 e a x 2 d x = 1 2 π a for  a > 0 {\displaystyle \int _{0}^{\infty }e^{-ax^{2}}\,dx={\frac {1}{2}}{\sqrt {\frac {\pi }{a}}}\quad {\text{for }}a>0} (the Gaussian integral)
0 e a x 2 cos b x d x = 1 2 π a e ( b 2 4 a ) {\displaystyle \int _{0}^{\infty }{e^{-ax^{2}}}\cos bx\,dx={\frac {1}{2}}{\sqrt {\frac {\pi }{a}}}e^{\left({\frac {-b^{2}}{4a}}\right)}}
0 e ( a x 2 + b x + c ) d x = 1 2 π a e ( b 2 4 a c 4 a ) erfc b 2 a ,  where  erfc ( p ) = 2 π p e x 2 d x {\displaystyle \int _{0}^{\infty }e^{-(ax^{2}+bx+c)}\,dx={\frac {1}{2}}{\sqrt {\frac {\pi }{a}}}e^{\left({\frac {b^{2}-4ac}{4a}}\right)}\cdot \operatorname {erfc} {\frac {b}{2{\sqrt {a}}}},{\text{ where }}\operatorname {erfc} (p)={\frac {2}{\sqrt {\pi }}}\int _{p}^{\infty }e^{-x^{2}}\,dx}
e ( a x 2 + b x + c )   d x = π a e ( b 2 4 a c 4 a ) {\displaystyle \int _{-\infty }^{\infty }e^{-(ax^{2}+bx+c)}\ dx={\sqrt {\frac {\pi }{a}}}e^{\left({\frac {b^{2}-4ac}{4a}}\right)}}
0 x n e a x   d x = Γ ( n + 1 ) a n + 1 {\displaystyle \int _{0}^{\infty }x^{n}e^{-ax}\ dx={\frac {\Gamma (n+1)}{a^{n+1}}}}
0 x 2 e a x 2 d x = 1 4 π a 3 for  a > 0 {\displaystyle \int _{0}^{\infty }{x^{2}e^{-ax^{2}}\,dx}={\frac {1}{4}}{\sqrt {\frac {\pi }{a^{3}}}}\quad {\text{for }}a>0}
0 x 2 n e a x 2 d x = 2 n 1 2 a 0 x 2 ( n 1 ) e a x 2 d x = ( 2 n 1 ) ! ! 2 n + 1 π a 2 n + 1 = ( 2 n ) ! n ! 2 2 n + 1 π a 2 n + 1 for  a > 0   ,   n = 1 , 2 , 3 {\displaystyle \int _{0}^{\infty }x^{2n}e^{-ax^{2}}\,dx={\frac {2n-1}{2a}}\int _{0}^{\infty }x^{2(n-1)}e^{-ax^{2}}\,dx={\frac {(2n-1)!!}{2^{n+1}}}{\sqrt {\frac {\pi }{a^{2n+1}}}}={\frac {(2n)!}{n!2^{2n+1}}}{\sqrt {\frac {\pi }{a^{2n+1}}}}\quad {\text{for }}a>0\ ,\ n=1,2,3\ldots } (where !! is the double factorial)
0 x 3 e a x 2 d x = 1 2 a 2 for  a > 0 {\displaystyle \int _{0}^{\infty }{x^{3}e^{-ax^{2}}\,dx}={\frac {1}{2a^{2}}}\quad {\text{for }}a>0}
0 x 2 n + 1 e a x 2 d x = n a 0 x 2 n 1 e a x 2 d x = n ! 2 a n + 1 for  a > 0   ,   n = 0 , 1 , 2 {\displaystyle \int _{0}^{\infty }x^{2n+1}e^{-ax^{2}}\,dx={\frac {n}{a}}\int _{0}^{\infty }x^{2n-1}e^{-ax^{2}}\,dx={\frac {n!}{2a^{n+1}}}\quad {\text{for }}a>0\ ,\ n=0,1,2\ldots }
0 x m e a x 2   d x = Γ ( m + 1 2 ) 2 a ( m + 1 2 ) {\displaystyle \int _{0}^{\infty }x^{m}e^{-ax^{2}}\ dx={\frac {\Gamma \left({\dfrac {m+1}{2}}\right)}{2a^{\left({\frac {m+1}{2}}\right)}}}}
0 e ( a x 2 b x 2 )   d x = 1 2 π a e 2 a b {\displaystyle \int _{0}^{\infty }e^{\left(-ax^{2}-{\frac {b}{x^{2}}}\right)}\ dx={\frac {1}{2}}{\sqrt {\frac {\pi }{a}}}e^{-2{\sqrt {ab}}}}
0 x e x 1   d x = ζ ( 2 ) = π 2 6 {\displaystyle \int _{0}^{\infty }{\frac {x}{e^{x}-1}}\ dx=\zeta (2)={\frac {\pi ^{2}}{6}}}
0 x n 1 e x 1   d x = Γ ( n ) ζ ( n ) {\displaystyle \int _{0}^{\infty }{\frac {x^{n-1}}{e^{x}-1}}\ dx=\Gamma (n)\zeta (n)}
0 x e x + 1   d x = 1 1 2 1 2 2 + 1 3 2 1 4 2 + = π 2 12 {\displaystyle \int _{0}^{\infty }{\frac {x}{e^{x}+1}}\ dx={\frac {1}{1^{2}}}-{\frac {1}{2^{2}}}+{\frac {1}{3^{2}}}-{\frac {1}{4^{2}}}+\dots ={\frac {\pi ^{2}}{12}}}
0 x n e x + 1   d x = n ! ( 2 n 1 2 n ) ζ ( n + 1 ) {\displaystyle \int _{0}^{\infty }{\frac {x^{n}}{e^{x}+1}}\ dx=n!\cdot \left({\frac {2^{n}-1}{2^{n}}}\right)\zeta (n+1)}
0 sin m x e 2 π x 1   d x = 1 4 coth m 2 1 2 m {\displaystyle \int _{0}^{\infty }{\frac {\sin mx}{e^{2\pi x}-1}}\ dx={\frac {1}{4}}\coth {\frac {m}{2}}-{\frac {1}{2m}}}
0 ( 1 1 + x e x )   d x x = γ {\displaystyle \int _{0}^{\infty }\left({\frac {1}{1+x}}-e^{-x}\right)\ {\frac {dx}{x}}=\gamma } (where γ {\displaystyle \gamma } is Euler–Mascheroni constant)
0 e x 2 e x x   d x = γ 2 {\displaystyle \int _{0}^{\infty }{\frac {e^{-x^{2}}-e^{-x}}{x}}\ dx={\frac {\gamma }{2}}}
0 ( 1 e x 1 e x x )   d x = γ {\displaystyle \int _{0}^{\infty }\left({\frac {1}{e^{x}-1}}-{\frac {e^{-x}}{x}}\right)\ dx=\gamma }
0 e a x e b x x sec p x   d x = 1 2 ln b 2 + p 2 a 2 + p 2 {\displaystyle \int _{0}^{\infty }{\frac {e^{-ax}-e^{-bx}}{x\sec px}}\ dx={\frac {1}{2}}\ln {\frac {b^{2}+p^{2}}{a^{2}+p^{2}}}}
0 e a x e b x x csc p x   d x = tan 1 b p tan 1 a p {\displaystyle \int _{0}^{\infty }{\frac {e^{-ax}-e^{-bx}}{x\csc px}}\ dx=\tan ^{-1}{\frac {b}{p}}-\tan ^{-1}{\frac {a}{p}}}
0 e a x ( 1 cos x ) x 2   d x = cot 1 a a 2 ln | a 2 + 1 a 2 | {\displaystyle \int _{0}^{\infty }{\frac {e^{-ax}(1-\cos x)}{x^{2}}}\ dx=\cot ^{-1}a-{\frac {a}{2}}\ln \left|{\frac {a^{2}+1}{a^{2}}}\right|}
e x 2 d x = π {\displaystyle \int _{-\infty }^{\infty }e^{-x^{2}}\,dx={\sqrt {\pi }}}
x 2 ( n + 1 ) e 1 2 x 2 d x = ( 2 n + 1 ) ! 2 n n ! 2 π for  n = 0 , 1 , 2 , {\displaystyle \int _{-\infty }^{\infty }x^{2(n+1)}e^{-{\frac {1}{2}}x^{2}}\,dx={\frac {(2n+1)!}{2^{n}n!}}{\sqrt {2\pi }}\quad {\text{for }}n=0,1,2,\ldots }

Definite integrals involving logarithmic functions

0 1 x m ( ln x ) n d x = ( 1 ) n n ! ( m + 1 ) n + 1 for  m > 1 , n = 0 , 1 , 2 , {\displaystyle \int _{0}^{1}x^{m}(\ln x)^{n}\,dx={\frac {(-1)^{n}n!}{(m+1)^{n+1}}}\quad {\text{for }}m>-1,n=0,1,2,\ldots }
1 x m ( ln x ) n d x = ( 1 ) n + 1 n ! ( m + 1 ) n + 1 for  m < 1 , n = 0 , 1 , 2 , {\displaystyle \int _{1}^{\infty }x^{m}(\ln x)^{n}\,dx={\frac {(-1)^{n+1}n!}{(m+1)^{n+1}}}\quad {\text{for }}m<-1,n=0,1,2,\ldots }
0 1 ln x 1 + x d x = π 2 12 {\displaystyle \int _{0}^{1}{\frac {\ln x}{1+x}}\,dx=-{\frac {\pi ^{2}}{12}}}
0 1 ln x 1 x d x = π 2 6 {\displaystyle \int _{0}^{1}{\frac {\ln x}{1-x}}\,dx=-{\frac {\pi ^{2}}{6}}}
0 1 ln ( 1 + x ) x d x = π 2 12 {\displaystyle \int _{0}^{1}{\frac {\ln(1+x)}{x}}\,dx={\frac {\pi ^{2}}{12}}}
0 1 ln ( 1 x ) x d x = π 2 6 {\displaystyle \int _{0}^{1}{\frac {\ln(1-x)}{x}}\,dx=-{\frac {\pi ^{2}}{6}}}
0 ln ( a 2 + x 2 ) b 2 + x 2   d x = π b ln ( a + b ) for  a , b > 0 {\displaystyle \int _{0}^{\infty }{\frac {\ln(a^{2}+x^{2})}{b^{2}+x^{2}}}\ dx={\frac {\pi }{b}}\ln(a+b)\quad {\text{for }}a,b>0}
0 ln x x 2 + a 2   d x = π ln a 2 a for  a > 0 {\displaystyle \int _{0}^{\infty }{\frac {\ln x}{x^{2}+a^{2}}}\ dx={\frac {\pi \ln a}{2a}}\quad {\text{for }}a>0}

Definite integrals involving hyperbolic functions

0 sin a x sinh b x   d x = π 2 b tanh a π 2 b {\displaystyle \int _{0}^{\infty }{\frac {\sin ax}{\sinh bx}}\ dx={\frac {\pi }{2b}}\tanh {\frac {a\pi }{2b}}}

0 cos a x cosh b x   d x = π 2 b 1 cosh a π 2 b {\displaystyle \int _{0}^{\infty }{\frac {\cos ax}{\cosh bx}}\ dx={\frac {\pi }{2b}}\cdot {\frac {1}{\cosh {\frac {a\pi }{2b}}}}}

0 x sinh a x   d x = π 2 4 a 2 {\displaystyle \int _{0}^{\infty }{\frac {x}{\sinh ax}}\ dx={\frac {\pi ^{2}}{4a^{2}}}}

0 x 2 n + 1 sinh a x   d x = c 2 n + 1 ( π a ) 2 ( n + 1 ) , c 2 n + 1 = ( 1 ) n 2 ( 1 2 k = 0 n 1 ( 1 ) k ( 2 n + 1 2 k + 1 ) c 2 k + 1 ) , c 1 = 1 4 {\displaystyle \int _{0}^{\infty }{\frac {x^{2n+1}}{\sinh ax}}\ dx=c_{2n+1}\left({\frac {\pi }{a}}\right)^{2(n+1)},\quad c_{2n+1}={\frac {(-1)^{n}}{2}}\left({\frac {1}{2}}-\sum _{k=0}^{n-1}(-1)^{k}{2n+1 \choose 2k+1}c_{2k+1}\right),\quad c_{1}={\frac {1}{4}}}

0 1 cosh a x   d x = π 2 a {\displaystyle \int _{0}^{\infty }{\frac {1}{\cosh ax}}\ dx={\frac {\pi }{2a}}}

0 x 2 n cosh a x   d x = d 2 n ( π a ) 2 n + 1 , d 2 n = ( 1 ) n 2 ( 1 4 n k = 0 n 1 ( 1 ) k ( 2 n 2 k ) d 2 k ) , d 0 = 1 2 {\displaystyle \int _{0}^{\infty }{\frac {x^{2n}}{\cosh ax}}\ dx=d_{2n}\left({\frac {\pi }{a}}\right)^{2n+1},\quad d_{2n}={\frac {(-1)^{n}}{2}}\left({\frac {1}{4^{n}}}-\sum _{k=0}^{n-1}(-1)^{k}{2n \choose 2k}d_{2k}\right),\quad d_{0}={\frac {1}{2}}}

Frullani integrals

0 f ( a x ) f ( b x ) x   d x = ( lim x 0 f ( x ) lim x f ( x ) ) ln ( b a ) {\displaystyle \int _{0}^{\infty }{\frac {f(ax)-f(bx)}{x}}\ dx=\left(\lim _{x\to 0}f(x)-\lim _{x\to \infty }f(x)\right)\ln \left({\frac {b}{a}}\right)}
holds if the integral exists and f ( x ) {\displaystyle f'(x)} is continuous.

See also

  • iconMathematics portal

References

  • Reynolds, Robert; Stauffer, Allan (2020). "Derivation of Logarithmic and Logarithmic Hyperbolic Tangent Integrals Expressed in Terms of Special Functions". Mathematics. 8 (687): 687. doi:10.3390/math8050687.
  • Reynolds, Robert; Stauffer, Allan (2019). "A Definite Integral Involving the Logarithmic Function in Terms of the Lerch Function". Mathematics. 7 (1148): 1148. doi:10.3390/math7121148.
  • Reynolds, Robert; Stauffer, Allan (2019). "Definite Integral of Arctangent and Polylogarithmic Functions Expressed as a Series". Mathematics. 7 (1099): 1099. doi:10.3390/math7111099.
  • Winckler, Anton (1861). "Eigenschaften Einiger Bestimmten Integrale". Hof, K.K., Ed.
  • Spiegel, Murray R.; Lipschutz, Seymour; Liu, John (2009). Mathematical handbook of formulas and tables (3rd ed.). McGraw-Hill. ISBN 978-0071548557.
  • Zwillinger, Daniel (2003). CRC standard mathematical tables and formulae (32nd ed.). CRC Press. ISBN 978-143983548-7.
  • Abramowitz, Milton; Stegun, Irene Ann, eds. (1983) [June 1964]. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series. Vol. 55 (Ninth reprint with additional corrections of tenth original printing with corrections (December 1972); first ed.). Washington D.C.; New York: United States Department of Commerce, National Bureau of Standards; Dover Publications. ISBN 978-0-486-61272-0. LCCN 64-60036. MR 0167642. LCCN 65-12253.