Lerch zeta function

In mathematics, the Lerch zeta function, sometimes called the Hurwitz–Lerch zeta function, is a special function that generalizes the Hurwitz zeta function and the polylogarithm. It is named after Czech mathematician Mathias Lerch, who published a paper about the function in 1887.[1]

Definition

The Lerch zeta function is given by

L ( λ , s , α ) = n = 0 e 2 π i λ n ( n + α ) s . {\displaystyle L(\lambda ,s,\alpha )=\sum _{n=0}^{\infty }{\frac {e^{2\pi i\lambda n}}{(n+\alpha )^{s}}}.}

A related function, the Lerch transcendent, is given by

Φ ( z , s , α ) = n = 0 z n ( n + α ) s {\displaystyle \Phi (z,s,\alpha )=\sum _{n=0}^{\infty }{\frac {z^{n}}{(n+\alpha )^{s}}}} .

The transcendent only converges for any real number α > 0 {\displaystyle \alpha >0} , where:

| z | < 1 {\displaystyle |z|<1} , or

R ( s ) > 1 {\displaystyle {\mathfrak {R}}(s)>1} , and | z | = 1 {\displaystyle |z|=1} .[2]

The two are related, as

Φ ( e 2 π i λ , s , α ) = L ( λ , s , α ) . {\displaystyle \,\Phi (e^{2\pi i\lambda },s,\alpha )=L(\lambda ,s,\alpha ).}

Integral representations

The Lerch transcendent has an integral representation:

Φ ( z , s , a ) = 1 Γ ( s ) 0 t s 1 e a t 1 z e t d t {\displaystyle \Phi (z,s,a)={\frac {1}{\Gamma (s)}}\int _{0}^{\infty }{\frac {t^{s-1}e^{-at}}{1-ze^{-t}}}\,dt}

The proof is based on using the integral definition of the Gamma function to write

Φ ( z , s , a ) Γ ( s ) = n = 0 z n ( n + a ) s 0 x s e x d x x = n = 0 0 t s z n e ( n + a ) t d t t {\displaystyle \Phi (z,s,a)\Gamma (s)=\sum _{n=0}^{\infty }{\frac {z^{n}}{(n+a)^{s}}}\int _{0}^{\infty }x^{s}e^{-x}{\frac {dx}{x}}=\sum _{n=0}^{\infty }\int _{0}^{\infty }t^{s}z^{n}e^{-(n+a)t}{\frac {dt}{t}}}

and then interchanging the sum and integral. The resulting integral representation converges for z C [ 1 , ) , {\displaystyle z\in \mathbb {C} \setminus [1,\infty ),} Re(s) > 0, and Re(a) > 0. This analytically continues Φ ( z , s , a ) {\displaystyle \Phi (z,s,a)} to z outside the unit disk. The integral formula also holds if z = 1, Re(s) > 1, and Re(a) > 0; see Hurwitz zeta function.[3][4]

A contour integral representation is given by

Φ ( z , s , a ) = Γ ( 1 s ) 2 π i C ( t ) s 1 e a t 1 z e t d t {\displaystyle \Phi (z,s,a)=-{\frac {\Gamma (1-s)}{2\pi i}}\int _{C}{\frac {(-t)^{s-1}e^{-at}}{1-ze^{-t}}}\,dt}

where C is a Hankel contour counterclockwise around the positive real axis, not enclosing any of the points t = log ( z ) + 2 k π i {\displaystyle t=\log(z)+2k\pi i} (for integer k) which are poles of the integrand. The integral assumes Re(a) > 0.[5]

Other integral representations

A Hermite-like integral representation is given by

Φ ( z , s , a ) = 1 2 a s + 0 z t ( a + t ) s d t + 2 a s 1 0 sin ( s arctan ( t ) t a log ( z ) ) ( 1 + t 2 ) s / 2 ( e 2 π a t 1 ) d t {\displaystyle \Phi (z,s,a)={\frac {1}{2a^{s}}}+\int _{0}^{\infty }{\frac {z^{t}}{(a+t)^{s}}}\,dt+{\frac {2}{a^{s-1}}}\int _{0}^{\infty }{\frac {\sin(s\arctan(t)-ta\log(z))}{(1+t^{2})^{s/2}(e^{2\pi at}-1)}}\,dt}

for

( a ) > 0 | z | < 1 {\displaystyle \Re (a)>0\wedge |z|<1}

and

Φ ( z , s , a ) = 1 2 a s + log s 1 ( 1 / z ) z a Γ ( 1 s , a log ( 1 / z ) ) + 2 a s 1 0 sin ( s arctan ( t ) t a log ( z ) ) ( 1 + t 2 ) s / 2 ( e 2 π a t 1 ) d t {\displaystyle \Phi (z,s,a)={\frac {1}{2a^{s}}}+{\frac {\log ^{s-1}(1/z)}{z^{a}}}\Gamma (1-s,a\log(1/z))+{\frac {2}{a^{s-1}}}\int _{0}^{\infty }{\frac {\sin(s\arctan(t)-ta\log(z))}{(1+t^{2})^{s/2}(e^{2\pi at}-1)}}\,dt}

for

( a ) > 0. {\displaystyle \Re (a)>0.}

Similar representations include

Φ ( z , s , a ) = 1 2 a s + 0 cos ( t log z ) sin ( s arctan t a ) sin ( t log z ) cos ( s arctan t a ) ( a 2 + t 2 ) s 2 tanh π t d t , {\displaystyle \Phi (z,s,a)={\frac {1}{2a^{s}}}+\int _{0}^{\infty }{\frac {\cos(t\log z)\sin {\Big (}s\arctan {\tfrac {t}{a}}{\Big )}-\sin(t\log z)\cos {\Big (}s\arctan {\tfrac {t}{a}}{\Big )}}{{\big (}a^{2}+t^{2}{\big )}^{\frac {s}{2}}\tanh \pi t}}\,dt,}

and

Φ ( z , s , a ) = 1 2 a s + 0 cos ( t log z ) sin ( s arctan t a ) sin ( t log z ) cos ( s arctan t a ) ( a 2 + t 2 ) s 2 sinh π t d t , {\displaystyle \Phi (-z,s,a)={\frac {1}{2a^{s}}}+\int _{0}^{\infty }{\frac {\cos(t\log z)\sin {\Big (}s\arctan {\tfrac {t}{a}}{\Big )}-\sin(t\log z)\cos {\Big (}s\arctan {\tfrac {t}{a}}{\Big )}}{{\big (}a^{2}+t^{2}{\big )}^{\frac {s}{2}}\sinh \pi t}}\,dt,}

holding for positive z (and more generally wherever the integrals converge). Furthermore,

Φ ( e i φ , s , a ) = L ( φ 2 π , s , a ) = 1 a s + 1 2 Γ ( s ) 0 t s 1 e a t ( e i φ e t ) cosh t cos φ d t , {\displaystyle \Phi (e^{i\varphi },s,a)=L{\big (}{\tfrac {\varphi }{2\pi }},s,a{\big )}={\frac {1}{a^{s}}}+{\frac {1}{2\Gamma (s)}}\int _{0}^{\infty }{\frac {t^{s-1}e^{-at}{\big (}e^{i\varphi }-e^{-t}{\big )}}{\cosh {t}-\cos {\varphi }}}\,dt,}

The last formula is also known as Lipschitz formula.

Special cases

The Lerch zeta function and Lerch transcendent generalize various special functions.

The Hurwitz zeta function is the special case[6]

ζ ( s , α ) = L ( 0 , s , α ) = Φ ( 1 , s , α ) = n = 0 1 ( n + α ) s . {\displaystyle \zeta (s,\alpha )=L(0,s,\alpha )=\Phi (1,s,\alpha )=\sum _{n=0}^{\infty }{\frac {1}{(n+\alpha )^{s}}}.}

The polylogarithm is another special case:[6]

Li s ( z ) = z Φ ( z , s , 1 ) = n = 1 z n n s . {\displaystyle {\textrm {Li}}_{s}(z)=z\Phi (z,s,1)=\sum _{n=1}^{\infty }{\frac {z^{n}}{n^{s}}}.}

The Riemann zeta function is a special case of both of the above:[6]

ζ ( s ) = Φ ( 1 , s , 1 ) = n = 1 1 n s {\displaystyle \zeta (s)=\Phi (1,s,1)=\sum _{n=1}^{\infty }{\frac {1}{n^{s}}}}

Other special cases include:

  • The Dirichlet eta function:[6]
η ( s ) = Φ ( 1 , s , 1 ) = n = 1 ( 1 ) n 1 n s {\displaystyle \eta (s)=\Phi (-1,s,1)=\sum _{n=1}^{\infty }{\frac {(-1)^{n-1}}{n^{s}}}}
  • The Dirichlet beta function:[6]
β ( s ) = 2 s Φ ( 1 , s , 1 / 2 ) = k = 0 ( 1 ) k ( 2 k + 1 ) s {\displaystyle \beta (s)=2^{-s}\Phi (-1,s,1/2)=\sum _{k=0}^{\infty }{\frac {(-1)^{k}}{(2k+1)^{s}}}}
  • The Legendre chi function:[6]
χ s ( z ) = 2 s z Φ ( z 2 , s , 1 / 2 ) = k = 0 z 2 k + 1 ( 2 k + 1 ) s {\displaystyle \chi _{s}(z)=2^{-s}z\Phi (z^{2},s,1/2)=\sum _{k=0}^{\infty }{\frac {z^{2k+1}}{(2k+1)^{s}}}}
  • The polygamma function:[citation needed]
ψ ( n ) ( α ) = ( 1 ) n + 1 n ! Φ ( 1 , n + 1 , α ) {\displaystyle \psi ^{(n)}(\alpha )=(-1)^{n+1}n!\Phi (1,n+1,\alpha )}

Identities

For λ rational, the summand is a root of unity, and thus L ( λ , s , α ) {\displaystyle L(\lambda ,s,\alpha )} may be expressed as a finite sum over the Hurwitz zeta function. Suppose λ = p q {\textstyle \lambda ={\frac {p}{q}}} with p , q Z {\displaystyle p,q\in \mathbb {Z} } and q > 0 {\displaystyle q>0} . Then z = ω = e 2 π i p q {\displaystyle z=\omega =e^{2\pi i{\frac {p}{q}}}} and ω q = 1 {\displaystyle \omega ^{q}=1} .

Φ ( ω , s , α ) = n = 0 ω n ( n + α ) s = m = 0 q 1 n = 0 ω q n + m ( q n + m + α ) s = m = 0 q 1 ω m q s ζ ( s , m + α q ) {\displaystyle \Phi (\omega ,s,\alpha )=\sum _{n=0}^{\infty }{\frac {\omega ^{n}}{(n+\alpha )^{s}}}=\sum _{m=0}^{q-1}\sum _{n=0}^{\infty }{\frac {\omega ^{qn+m}}{(qn+m+\alpha )^{s}}}=\sum _{m=0}^{q-1}\omega ^{m}q^{-s}\zeta \left(s,{\frac {m+\alpha }{q}}\right)}

Various identities include:

Φ ( z , s , a ) = z n Φ ( z , s , a + n ) + k = 0 n 1 z k ( k + a ) s {\displaystyle \Phi (z,s,a)=z^{n}\Phi (z,s,a+n)+\sum _{k=0}^{n-1}{\frac {z^{k}}{(k+a)^{s}}}}

and

Φ ( z , s 1 , a ) = ( a + z z ) Φ ( z , s , a ) {\displaystyle \Phi (z,s-1,a)=\left(a+z{\frac {\partial }{\partial z}}\right)\Phi (z,s,a)}

and

Φ ( z , s + 1 , a ) = 1 s a Φ ( z , s , a ) . {\displaystyle \Phi (z,s+1,a)=-{\frac {1}{s}}{\frac {\partial }{\partial a}}\Phi (z,s,a).}

Series representations

A series representation for the Lerch transcendent is given by

Φ ( z , s , q ) = 1 1 z n = 0 ( z 1 z ) n k = 0 n ( 1 ) k ( n k ) ( q + k ) s . {\displaystyle \Phi (z,s,q)={\frac {1}{1-z}}\sum _{n=0}^{\infty }\left({\frac {-z}{1-z}}\right)^{n}\sum _{k=0}^{n}(-1)^{k}{\binom {n}{k}}(q+k)^{-s}.}

(Note that ( n k ) {\displaystyle {\tbinom {n}{k}}} is a binomial coefficient.)

The series is valid for all s, and for complex z with Re(z)<1/2. Note a general resemblance to a similar series representation for the Hurwitz zeta function.[7]

A Taylor series in the first parameter was given by Arthur Erdélyi. It may be written as the following series, which is valid for[8]

| log ( z ) | < 2 π ; s 1 , 2 , 3 , ; a 0 , 1 , 2 , {\displaystyle \left|\log(z)\right|<2\pi ;s\neq 1,2,3,\dots ;a\neq 0,-1,-2,\dots }
Φ ( z , s , a ) = z a [ Γ ( 1 s ) ( log ( z ) ) s 1 + k = 0 ζ ( s k , a ) log k ( z ) k ! ] {\displaystyle \Phi (z,s,a)=z^{-a}\left[\Gamma (1-s)\left(-\log(z)\right)^{s-1}+\sum _{k=0}^{\infty }\zeta (s-k,a){\frac {\log ^{k}(z)}{k!}}\right]}

If n is a positive integer, then

Φ ( z , n , a ) = z a { k = 0 k n 1 ζ ( n k , a ) log k ( z ) k ! + [ ψ ( n ) ψ ( a ) log ( log ( z ) ) ] log n 1 ( z ) ( n 1 ) ! } , {\displaystyle \Phi (z,n,a)=z^{-a}\left\{\sum _{{k=0} \atop k\neq n-1}^{\infty }\zeta (n-k,a){\frac {\log ^{k}(z)}{k!}}+\left[\psi (n)-\psi (a)-\log(-\log(z))\right]{\frac {\log ^{n-1}(z)}{(n-1)!}}\right\},}

where ψ ( n ) {\displaystyle \psi (n)} is the digamma function.

A Taylor series in the third variable is given by

Φ ( z , s , a + x ) = k = 0 Φ ( z , s + k , a ) ( s ) k ( x ) k k ! ; | x | < ( a ) , {\displaystyle \Phi (z,s,a+x)=\sum _{k=0}^{\infty }\Phi (z,s+k,a)(s)_{k}{\frac {(-x)^{k}}{k!}};|x|<\Re (a),}

where ( s ) k {\displaystyle (s)_{k}} is the Pochhammer symbol.

Series at a = −n is given by

Φ ( z , s , a ) = k = 0 n z k ( a + k ) s + z n m = 0 ( 1 m s ) m Li s + m ( z ) ( a + n ) m m ! ;   a n {\displaystyle \Phi (z,s,a)=\sum _{k=0}^{n}{\frac {z^{k}}{(a+k)^{s}}}+z^{n}\sum _{m=0}^{\infty }(1-m-s)_{m}\operatorname {Li} _{s+m}(z){\frac {(a+n)^{m}}{m!}};\ a\rightarrow -n}

A special case for n = 0 has the following series

Φ ( z , s , a ) = 1 a s + m = 0 ( 1 m s ) m Li s + m ( z ) a m m ! ; | a | < 1 , {\displaystyle \Phi (z,s,a)={\frac {1}{a^{s}}}+\sum _{m=0}^{\infty }(1-m-s)_{m}\operatorname {Li} _{s+m}(z){\frac {a^{m}}{m!}};|a|<1,}

where Li s ( z ) {\displaystyle \operatorname {Li} _{s}(z)} is the polylogarithm.

An asymptotic series for s {\displaystyle s\rightarrow -\infty }

Φ ( z , s , a ) = z a Γ ( 1 s ) k = [ 2 k π i log ( z ) ] s 1 e 2 k π a i {\displaystyle \Phi (z,s,a)=z^{-a}\Gamma (1-s)\sum _{k=-\infty }^{\infty }[2k\pi i-\log(z)]^{s-1}e^{2k\pi ai}}

for | a | < 1 ; ( s ) < 0 ; z ( , 0 ) {\displaystyle |a|<1;\Re (s)<0;z\notin (-\infty ,0)} and

Φ ( z , s , a ) = z a Γ ( 1 s ) k = [ ( 2 k + 1 ) π i log ( z ) ] s 1 e ( 2 k + 1 ) π a i {\displaystyle \Phi (-z,s,a)=z^{-a}\Gamma (1-s)\sum _{k=-\infty }^{\infty }[(2k+1)\pi i-\log(z)]^{s-1}e^{(2k+1)\pi ai}}

for | a | < 1 ; ( s ) < 0 ; z ( 0 , ) . {\displaystyle |a|<1;\Re (s)<0;z\notin (0,\infty ).}

An asymptotic series in the incomplete gamma function

Φ ( z , s , a ) = 1 2 a s + 1 z a k = 1 e 2 π i ( k 1 ) a Γ ( 1 s , a ( 2 π i ( k 1 ) log ( z ) ) ) ( 2 π i ( k 1 ) log ( z ) ) 1 s + e 2 π i k a Γ ( 1 s , a ( 2 π i k log ( z ) ) ) ( 2 π i k log ( z ) ) 1 s {\displaystyle \Phi (z,s,a)={\frac {1}{2a^{s}}}+{\frac {1}{z^{a}}}\sum _{k=1}^{\infty }{\frac {e^{-2\pi i(k-1)a}\Gamma (1-s,a(-2\pi i(k-1)-\log(z)))}{(-2\pi i(k-1)-\log(z))^{1-s}}}+{\frac {e^{2\pi ika}\Gamma (1-s,a(2\pi ik-\log(z)))}{(2\pi ik-\log(z))^{1-s}}}}

for | a | < 1 ; ( s ) < 0. {\displaystyle |a|<1;\Re (s)<0.}

The representation as a generalized hypergeometric function is[9]

Φ ( z , s , α ) = 1 α s s + 1 F s ( 1 , α , α , α , 1 + α , 1 + α , 1 + α , z ) . {\displaystyle \Phi (z,s,\alpha )={\frac {1}{\alpha ^{s}}}{}_{s+1}F_{s}\left({\begin{array}{c}1,\alpha ,\alpha ,\alpha ,\cdots \\1+\alpha ,1+\alpha ,1+\alpha ,\cdots \\\end{array}}\mid z\right).}

Asymptotic expansion

The polylogarithm function L i n ( z ) {\displaystyle \mathrm {Li} _{n}(z)} is defined as

L i 0 ( z ) = z 1 z , L i n ( z ) = z d d z L i 1 n ( z ) . {\displaystyle \mathrm {Li} _{0}(z)={\frac {z}{1-z}},\qquad \mathrm {Li} _{-n}(z)=z{\frac {d}{dz}}\mathrm {Li} _{1-n}(z).}

Let

Ω a { C [ 1 , ) if  a > 0 , z C , | z | < 1 if  a 0. {\displaystyle \Omega _{a}\equiv {\begin{cases}\mathbb {C} \setminus [1,\infty )&{\text{if }}\Re a>0,\\{z\in \mathbb {C} ,|z|<1}&{\text{if }}\Re a\leq 0.\end{cases}}}

For | A r g ( a ) | < π , s C {\displaystyle |\mathrm {Arg} (a)|<\pi ,s\in \mathbb {C} } and z Ω a {\displaystyle z\in \Omega _{a}} , an asymptotic expansion of Φ ( z , s , a ) {\displaystyle \Phi (z,s,a)} for large a {\displaystyle a} and fixed s {\displaystyle s} and z {\displaystyle z} is given by

Φ ( z , s , a ) = 1 1 z 1 a s + n = 1 N 1 ( 1 ) n L i n ( z ) n ! ( s ) n a n + s + O ( a N s ) {\displaystyle \Phi (z,s,a)={\frac {1}{1-z}}{\frac {1}{a^{s}}}+\sum _{n=1}^{N-1}{\frac {(-1)^{n}\mathrm {Li} _{-n}(z)}{n!}}{\frac {(s)_{n}}{a^{n+s}}}+O(a^{-N-s})}

for N N {\displaystyle N\in \mathbb {N} } , where ( s ) n = s ( s + 1 ) ( s + n 1 ) {\displaystyle (s)_{n}=s(s+1)\cdots (s+n-1)} is the Pochhammer symbol.[10]

Let

f ( z , x , a ) 1 ( z e x ) 1 a 1 z e x . {\displaystyle f(z,x,a)\equiv {\frac {1-(ze^{-x})^{1-a}}{1-ze^{-x}}}.}

Let C n ( z , a ) {\displaystyle C_{n}(z,a)} be its Taylor coefficients at x = 0 {\displaystyle x=0} . Then for fixed N N , a > 1 {\displaystyle N\in \mathbb {N} ,\Re a>1} and s > 0 {\displaystyle \Re s>0} ,

Φ ( z , s , a ) L i s ( z ) z a = n = 0 N 1 C n ( z , a ) ( s ) n a n + s + O ( ( a ) 1 N s + a z a ) , {\displaystyle \Phi (z,s,a)-{\frac {\mathrm {Li} _{s}(z)}{z^{a}}}=\sum _{n=0}^{N-1}C_{n}(z,a){\frac {(s)_{n}}{a^{n+s}}}+O\left((\Re a)^{1-N-s}+az^{-\Re a}\right),}

as a {\displaystyle \Re a\to \infty } .[11]

Software

The Lerch transcendent is implemented as LerchPhi in Maple and Mathematica, and as lerchphi in mpmath and SymPy.

References

  1. ^ Lerch, Mathias (1887), "Note sur la fonction K ( w , x , s ) = k = 0 e 2 k π i x ( w + k ) s {\displaystyle \scriptstyle {\mathfrak {K}}(w,x,s)=\sum _{k=0}^{\infty }{e^{2k\pi ix} \over (w+k)^{s}}} ", Acta Mathematica (in French), 11 (1–4): 19–24, doi:10.1007/BF02612318, JFM 19.0438.01, MR 1554747, S2CID 121885446
  2. ^ https://arxiv.org/pdf/math/0506319.pdf
  3. ^ Bateman & Erdélyi 1953, p. 27
  4. ^ Guillera & Sondow 2008, Lemma 2.1 and 2.2
  5. ^ Bateman & Erdélyi 1953, p. 28
  6. ^ a b c d e f Guillera & Sondow 2008, p. 248–249
  7. ^ "The Analytic Continuation of the Lerch Transcendent and the Riemann Zeta Function". 27 April 2020. Retrieved 28 April 2020.
  8. ^ B. R. Johnson (1974). "Generalized Lerch zeta function". Pacific J. Math. 53 (1): 189–193. doi:10.2140/pjm.1974.53.189.
  9. ^ Gottschalk, J. E.; Maslen, E. N. (1988). "Reduction formulae for generalized hypergeometric functions of one variable". J. Phys. A. 21 (9): 1983–1998. Bibcode:1988JPhA...21.1983G. doi:10.1088/0305-4470/21/9/015.
  10. ^ Ferreira, Chelo; López, José L. (October 2004). "Asymptotic expansions of the Hurwitz–Lerch zeta function". Journal of Mathematical Analysis and Applications. 298 (1): 210–224. doi:10.1016/j.jmaa.2004.05.040.
  11. ^ Cai, Xing Shi; López, José L. (10 June 2019). "A note on the asymptotic expansion of the Lerch's transcendent". Integral Transforms and Special Functions. 30 (10): 844–855. arXiv:1806.01122. doi:10.1080/10652469.2019.1627530. S2CID 119619877.
  • Apostol, T. M. (2010), "Lerch's Transcendent", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248..
  • Bateman, H.; Erdélyi, A. (1953), Higher Transcendental Functions, Vol. I (PDF), New York: McGraw-Hill. (See § 1.11, "The function Ψ(z,s,v)", p. 27)
  • Gradshteyn, Izrail Solomonovich; Ryzhik, Iosif Moiseevich; Geronimus, Yuri Veniaminovich; Tseytlin, Michail Yulyevich; Jeffrey, Alan (2015) [October 2014]. "9.55.". In Zwillinger, Daniel; Moll, Victor Hugo (eds.). Table of Integrals, Series, and Products. Translated by Scripta Technica, Inc. (8 ed.). Academic Press. ISBN 978-0-12-384933-5. LCCN 2014010276.
  • Guillera, Jesus; Sondow, Jonathan (2008), "Double integrals and infinite products for some classical constants via analytic continuations of Lerch's transcendent", The Ramanujan Journal, 16 (3): 247–270, arXiv:math.NT/0506319, doi:10.1007/s11139-007-9102-0, MR 2429900, S2CID 119131640. (Includes various basic identities in the introduction.)
  • Jackson, M. (1950), "On Lerch's transcendent and the basic bilateral hypergeometric series 2ψ2", J. London Math. Soc., 25 (3): 189–196, doi:10.1112/jlms/s1-25.3.189, MR 0036882.
  • Johansson, F.; Blagouchine, Ia. (2019), "Computing Stieltjes constants using complex integration", Mathematics of Computation, 88 (318): 1829–1850, arXiv:1804.01679, doi:10.1090/mcom/3401, MR 3925487, S2CID 4619883.
  • Laurinčikas, Antanas; Garunkštis, Ramūnas (2002), The Lerch zeta-function, Dordrecht: Kluwer Academic Publishers, ISBN 978-1-4020-1014-9, MR 1979048.

External links

  • Aksenov, Sergej V.; Jentschura, Ulrich D. (2002), C and Mathematica Programs for Calculation of Lerch's Transcendent.
  • Ramunas Garunkstis, Home Page (2005) (Provides numerous references and preprints.)
  • Garunkstis, Ramunas (2004). "Approximation of the Lerch Zeta Function" (PDF). Lithuanian Mathematical Journal. 44 (2): 140–144. doi:10.1023/B:LIMA.0000033779.41365.a5. S2CID 123059665.
  • Kanemitsu, S.; Tanigawa, Y.; Tsukada, H. (2015). "A generalization of Bochner's formula". Kanemitsu, S.; Tanigawa, Y.; Tsukada, H. (2004). "A generalization of Bochner's formula". Hardy-Ramanujan Journal. 27. doi:10.46298/hrj.2004.150.
  • Weisstein, Eric W. "Lerch Transcendent". MathWorld.
  • Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W., eds. (2010), "Lerch's Transcendent", NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248.