Khatri–Rao product

Type of product of matrices

In mathematics, the Khatri–Rao product or block Kronecker product of two partitioned matrices A {\displaystyle \mathbf {A} } and B {\displaystyle \mathbf {B} } is defined as[1][2][3]

A B = ( A i j B i j ) i j {\displaystyle \mathbf {A} \ast \mathbf {B} =\left(\mathbf {A} _{ij}\otimes \mathbf {B} _{ij}\right)_{ij}}

in which the ij-th block is the mipi × njqj sized Kronecker product of the corresponding blocks of A and B, assuming the number of row and column partitions of both matrices is equal. The size of the product is then i mipi) × (Σj njqj).

For example, if A and B both are 2 × 2 partitioned matrices e.g.:

A = [ A 11 A 12 A 21 A 22 ] = [ 1 2 3 4 5 6 7 8 9 ] , B = [ B 11 B 12 B 21 B 22 ] = [ 1 4 7 2 5 8 3 6 9 ] , {\displaystyle \mathbf {A} =\left[{\begin{array}{c | c}\mathbf {A} _{11}&\mathbf {A} _{12}\\\hline \mathbf {A} _{21}&\mathbf {A} _{22}\end{array}}\right]=\left[{\begin{array}{c c | c}1&2&3\\4&5&6\\\hline 7&8&9\end{array}}\right],\quad \mathbf {B} =\left[{\begin{array}{c | c}\mathbf {B} _{11}&\mathbf {B} _{12}\\\hline \mathbf {B} _{21}&\mathbf {B} _{22}\end{array}}\right]=\left[{\begin{array}{c | c c}1&4&7\\\hline 2&5&8\\3&6&9\end{array}}\right],}

we obtain:

A B = [ A 11 B 11 A 12 B 12 A 21 B 21 A 22 B 22 ] = [ 1 2 12 21 4 5 24 42 14 16 45 72 21 24 54 81 ] . {\displaystyle \mathbf {A} \ast \mathbf {B} =\left[{\begin{array}{c | c}\mathbf {A} _{11}\otimes \mathbf {B} _{11}&\mathbf {A} _{12}\otimes \mathbf {B} _{12}\\\hline \mathbf {A} _{21}\otimes \mathbf {B} _{21}&\mathbf {A} _{22}\otimes \mathbf {B} _{22}\end{array}}\right]=\left[{\begin{array}{c c | c c}1&2&12&21\\4&5&24&42\\\hline 14&16&45&72\\21&24&54&81\end{array}}\right].}

This is a submatrix of the Tracy–Singh product [4] of the two matrices (each partition in this example is a partition in a corner of the Tracy–Singh product).

Column-wise Kronecker product

The column-wise Kronecker product of two matrices is a special case of the Khatri-Rao product as defined above, and may also be called the Khatri–Rao product. This product assumes the partitions of the matrices are their columns. In this case m1 = m, p1 = p, n = q and for each j: nj = pj = 1. The resulting product is a mp × n matrix of which each column is the Kronecker product of the corresponding columns of A and B. Using the matrices from the previous examples with the columns partitioned:

C = [ C 1 C 2 C 3 ] = [ 1 2 3 4 5 6 7 8 9 ] , D = [ D 1 D 2 D 3 ] = [ 1 4 7 2 5 8 3 6 9 ] , {\displaystyle \mathbf {C} =\left[{\begin{array}{c | c | c}\mathbf {C} _{1}&\mathbf {C} _{2}&\mathbf {C} _{3}\end{array}}\right]=\left[{\begin{array}{c | c | c}1&2&3\\4&5&6\\7&8&9\end{array}}\right],\quad \mathbf {D} =\left[{\begin{array}{c | c | c }\mathbf {D} _{1}&\mathbf {D} _{2}&\mathbf {D} _{3}\end{array}}\right]=\left[{\begin{array}{c | c | c }1&4&7\\2&5&8\\3&6&9\end{array}}\right],}

so that:

C D = [ C 1 D 1 C 2 D 2 C 3 D 3 ] = [ 1 8 21 2 10 24 3 12 27 4 20 42 8 25 48 12 30 54 7 32 63 14 40 72 21 48 81 ] . {\displaystyle \mathbf {C} \ast \mathbf {D} =\left[{\begin{array}{c | c | c }\mathbf {C} _{1}\otimes \mathbf {D} _{1}&\mathbf {C} _{2}\otimes \mathbf {D} _{2}&\mathbf {C} _{3}\otimes \mathbf {D} _{3}\end{array}}\right]=\left[{\begin{array}{c | c | c }1&8&21\\2&10&24\\3&12&27\\4&20&42\\8&25&48\\12&30&54\\7&32&63\\14&40&72\\21&48&81\end{array}}\right].}

This column-wise version of the Khatri–Rao product is useful in linear algebra approaches to data analytical processing[5] and in optimizing the solution of inverse problems dealing with a diagonal matrix.[6][7]

In 1996 the column-wise Khatri–Rao product was proposed to estimate the angles of arrival (AOAs) and delays of multipath signals[8] and four coordinates of signals sources[9] at a digital antenna array.

Face-splitting product

Face splitting product of matrices

An alternative concept of the matrix product, which uses row-wise splitting of matrices with a given quantity of rows, was proposed by V. Slyusar[10] in 1996.[9][11][12][13][14]

This matrix operation was named the "face-splitting product" of matrices[11][13] or the "transposed Khatri–Rao product". This type of operation is based on row-by-row Kronecker products of two matrices. Using the matrices from the previous examples with the rows partitioned:

C = [ C 1 C 2 C 3 ] = [ 1 2 3 4 5 6 7 8 9 ] , D = [ D 1 D 2 D 3 ] = [ 1 4 7 2 5 8 3 6 9 ] , {\displaystyle \mathbf {C} ={\begin{bmatrix}\mathbf {C} _{1}\\\hline \mathbf {C} _{2}\\\hline \mathbf {C} _{3}\\\end{bmatrix}}={\begin{bmatrix}1&2&3\\\hline 4&5&6\\\hline 7&8&9\end{bmatrix}},\quad \mathbf {D} ={\begin{bmatrix}\mathbf {D} _{1}\\\hline \mathbf {D} _{2}\\\hline \mathbf {D} _{3}\\\end{bmatrix}}={\begin{bmatrix}1&4&7\\\hline 2&5&8\\\hline 3&6&9\end{bmatrix}},}

the result can be obtained:[9][11][13]

C D = [ C 1 D 1 C 2 D 2 C 3 D 3 ] = [ 1 4 7 2 8 14 3 12 21 8 20 32 10 25 40 12 30 48 21 42 63 24 48 72 27 54 81 ] . {\displaystyle \mathbf {C} \bullet \mathbf {D} ={\begin{bmatrix}\mathbf {C} _{1}\otimes \mathbf {D} _{1}\\\hline \mathbf {C} _{2}\otimes \mathbf {D} _{2}\\\hline \mathbf {C} _{3}\otimes \mathbf {D} _{3}\\\end{bmatrix}}={\begin{bmatrix}1&4&7&2&8&14&3&12&21\\\hline 8&20&32&10&25&40&12&30&48\\\hline 21&42&63&24&48&72&27&54&81\end{bmatrix}}.}

Main properties

  1. Transpose (V. Slyusar, 1996[9][11][12]):
    ( A B ) T = A T B T {\displaystyle \left(\mathbf {A} \bullet \mathbf {B} \right)^{\textsf {T}}={\textbf {A}}^{\textsf {T}}\ast \mathbf {B} ^{\textsf {T}}} ,
  2. Bilinearity and associativity:[9][11][12]
    A ( B + C ) = A B + A C , ( B + C ) A = B A + C A , ( k A ) B = A ( k B ) = k ( A B ) , ( A B ) C = A ( B C ) , {\displaystyle {\begin{aligned}\mathbf {A} \bullet (\mathbf {B} +\mathbf {C} )&=\mathbf {A} \bullet \mathbf {B} +\mathbf {A} \bullet \mathbf {C} ,\\(\mathbf {B} +\mathbf {C} )\bullet \mathbf {A} &=\mathbf {B} \bullet \mathbf {A} +\mathbf {C} \bullet \mathbf {A} ,\\(k\mathbf {A} )\bullet \mathbf {B} &=\mathbf {A} \bullet (k\mathbf {B} )=k(\mathbf {A} \bullet \mathbf {B} ),\\(\mathbf {A} \bullet \mathbf {B} )\bullet \mathbf {C} &=\mathbf {A} \bullet (\mathbf {B} \bullet \mathbf {C} ),\\\end{aligned}}}

    where A, B and C are matrices, and k is a scalar,

    a B = B a {\displaystyle a\bullet \mathbf {B} =\mathbf {B} \bullet a} ,[12]
    where a {\displaystyle a} is a vector,
  3. The mixed-product property (V. Slyusar, 1997[12]):
    ( A B ) ( A T B T ) = ( A A T ) ( B B T ) {\displaystyle (\mathbf {A} \bullet \mathbf {B} )\left(\mathbf {A} ^{\textsf {T}}\ast \mathbf {B} ^{\textsf {T}}\right)=\left(\mathbf {A} \mathbf {A} ^{\textsf {T}}\right)\circ \left(\mathbf {B} \mathbf {B} ^{\textsf {T}}\right)} ,
    ( A B ) ( C D ) = ( A C ) ( B D ) {\displaystyle (\mathbf {A} \bullet \mathbf {B} )(\mathbf {C} \ast \mathbf {D} )=(\mathbf {A} \mathbf {C} )\circ (\mathbf {B} \mathbf {D} )} ,[13]
    ( A B C D ) ( L M N P ) = ( A L ) ( B M ) ( C N ) ( D P ) {\displaystyle (\mathbf {A} \bullet \mathbf {B} \bullet \mathbf {C} \bullet \mathbf {D} )(\mathbf {L} \ast \mathbf {M} \ast \mathbf {N} \ast \mathbf {P} )=(\mathbf {A} \mathbf {L} )\circ (\mathbf {B} \mathbf {M} )\circ (\mathbf {C} \mathbf {N} )\circ (\mathbf {D} \mathbf {P} )} [15]
    ( A B ) T ( A B ) = ( A T A ) ( B T B ) {\displaystyle (\mathbf {A} \ast \mathbf {B} )^{\textsf {T}}(\mathbf {A} \ast \mathbf {B} )=\left(\mathbf {A} ^{\textsf {T}}\mathbf {A} \right)\circ \left(\mathbf {B} ^{\textsf {T}}\mathbf {B} \right)} ,[16]
    where {\displaystyle \circ } denotes the Hadamard product,
  4. ( A B ) ( C D ) = ( A C ) ( B D ) {\displaystyle (\mathbf {A} \circ \mathbf {B} )\bullet (\mathbf {C} \circ \mathbf {D} )=(\mathbf {A} \bullet \mathbf {C} )\circ (\mathbf {B} \bullet \mathbf {D} )} ,[12]
  5. A ( B C ) = ( A B ) C {\displaystyle \mathbf {A} \otimes (\mathbf {B} \bullet \mathbf {C} )=(\mathbf {A} \otimes \mathbf {B} )\bullet \mathbf {C} } ,[9]
  6. ( A B ) ( C D ) = ( A C ) ( B D ) {\displaystyle (\mathbf {A} \otimes \mathbf {B} )(\mathbf {C} \ast \mathbf {D} )=(\mathbf {A} \mathbf {C} )\ast (\mathbf {B} \mathbf {D} )} ,[16]
  7. ( A B ) ( C D ) = P [ ( A C ) ( B D ) ] {\displaystyle (\mathbf {A} \otimes \mathbf {B} )\ast (\mathbf {C} \otimes \mathbf {D} )=\mathbf {P} [(\mathbf {A} \ast \mathbf {C} )\otimes (\mathbf {B} \ast \mathbf {D} )]} , where P {\displaystyle \mathbf {P} } is a permutation matrix.[7]
  8.  
    ( A B ) ( C D ) = ( A C ) ( B D ) {\displaystyle (\mathbf {A} \bullet \mathbf {B} )(\mathbf {C} \otimes \mathbf {D} )=(\mathbf {A} \mathbf {C} )\bullet (\mathbf {B} \mathbf {D} )} ,[13][15]
    Similarly:
    ( A L ) ( B M ) ( C S ) = ( A B C ) ( L M S ) {\displaystyle (\mathbf {A} \bullet \mathbf {L} )(\mathbf {B} \otimes \mathbf {M} )\cdots (\mathbf {C} \otimes \mathbf {S} )=(\mathbf {A} \mathbf {B} \cdots \mathbf {C} )\bullet (\mathbf {L} \mathbf {M} \cdots \mathbf {S} )} ,
  9.  
    c T d T = c T d T {\displaystyle c^{\textsf {T}}\bullet d^{\textsf {T}}=c^{\textsf {T}}\otimes d^{\textsf {T}}} ,[12]
    c d = c d {\displaystyle c\ast d=c\otimes d} ,
    where c {\displaystyle c} and d {\displaystyle d} are vectors,
  10. ( A c T ) d = ( A d T ) c {\displaystyle \left(\mathbf {A} \ast c^{\textsf {T}}\right)d=\left(\mathbf {A} \ast d^{\textsf {T}}\right)c} ,[17] d T ( c A T ) = c T ( d A T ) {\displaystyle d^{\textsf {T}}\left(c\bullet \mathbf {A} ^{\textsf {T}}\right)=c^{\textsf {T}}\left(d\bullet \mathbf {A} ^{\textsf {T}}\right)} ,
  11.  
    ( A B ) ( c d ) = ( A c ) ( B d ) {\displaystyle (\mathbf {A} \bullet \mathbf {B} )(c\otimes d)=(\mathbf {A} c)\circ (\mathbf {B} d)} ,[18]
    where c {\displaystyle c} and d {\displaystyle d} are vectors (it is a combine of properties 3 an 8), Similarly:
    ( A B ) ( M N c Q P d ) = ( A M N c ) ( B Q P d ) , {\displaystyle (\mathbf {A} \bullet \mathbf {B} )(\mathbf {M} \mathbf {N} c\otimes \mathbf {Q} \mathbf {P} d)=(\mathbf {A} \mathbf {M} \mathbf {N} c)\circ (\mathbf {B} \mathbf {Q} \mathbf {P} d),}
  12.  
    F ( C ( 1 ) x C ( 2 ) y ) = ( F C ( 1 ) F C ( 2 ) ) ( x y ) = F C ( 1 ) x F C ( 2 ) y {\displaystyle {\mathcal {F}}\left(C^{(1)}x\star C^{(2)}y\right)=\left({\mathcal {F}}C^{(1)}\bullet {\mathcal {F}}C^{(2)}\right)(x\otimes y)={\mathcal {F}}C^{(1)}x\circ {\mathcal {F}}C^{(2)}y} ,
    where {\displaystyle \star } is vector convolution and F {\displaystyle {\mathcal {F}}} is the Fourier transform matrix (this result is an evolving of count sketch properties[19]),
  13.  
    A B = ( A 1 k T ) ( 1 c T B ) {\displaystyle \mathbf {A} \bullet \mathbf {B} =\left(\mathbf {A} \otimes \mathbf {1_{k}} ^{\textsf {T}}\right)\circ \left(\mathbf {1_{c}} ^{\textsf {T}}\otimes \mathbf {B} \right)} ,[20]
    where A {\displaystyle \mathbf {A} } is r × c {\displaystyle r\times c} matrix, B {\displaystyle \mathbf {B} } is r × k {\displaystyle r\times k} matrix, 1 c {\displaystyle \mathbf {1_{c}} } is a vector of 1's of length c {\displaystyle c} , and 1 k {\displaystyle \mathbf {1_{k}} } is a vector of 1's of length k {\displaystyle k} or
    M M = ( M 1 T ) ( 1 T M ) {\displaystyle \mathbf {M} \bullet \mathbf {M} =\left(\mathbf {M} \otimes \mathbf {1} ^{\textsf {T}}\right)\circ \left(\mathbf {1} ^{\textsf {T}}\otimes \mathbf {M} \right)} ,[21]
    where M {\displaystyle \mathbf {M} } is r × c {\displaystyle r\times c} matrix, {\displaystyle \circ } means element by element multiplication and 1 {\displaystyle \mathbf {1} } is a vector of 1's of length c {\displaystyle c} .
    M M = M [ ] ( M 1 T ) {\displaystyle \mathbf {M} \bullet \mathbf {M} =\mathbf {M} [\circ ]\left(\mathbf {M} \otimes \mathbf {1} ^{\textsf {T}}\right)} ,
    where [ ] {\displaystyle [\circ ]} denotes the penetrating face product of matrices.[13] Similarly:
    P N = ( P 1 k ) ( 1 c N ) {\displaystyle \mathbf {P} \ast \mathbf {N} =(\mathbf {P} \otimes \mathbf {1_{k}} )\circ (\mathbf {1_{c}} \otimes \mathbf {N} )} , where P {\displaystyle \mathbf {P} } is c × r {\displaystyle c\times r} matrix, N {\displaystyle \mathbf {N} } is k × r {\displaystyle k\times r} matrix,.
  14.  
    W d A = w A {\displaystyle \mathbf {W_{d}} \mathbf {A} =\mathbf {w} \bullet \mathbf {A} } ,[12]
    v e c ( ( w T A ) B ) = ( B T A ) w {\displaystyle vec((\mathbf {w} ^{\textsf {T}}\ast \mathbf {A} )\mathbf {B} )=(\mathbf {B} ^{\textsf {T}}\ast \mathbf {A} )\mathbf {w} } [13]= v e c ( A ( w B ) ) {\displaystyle vec(\mathbf {A} (\mathbf {w} \bullet \mathbf {B} ))} ,
    vec ( A T W d A ) = ( A A ) T w {\displaystyle \operatorname {vec} \left(\mathbf {A} ^{\textsf {T}}\mathbf {W_{d}} \mathbf {A} \right)=\left(\mathbf {A} \bullet \mathbf {A} \right)^{\textsf {T}}\mathbf {w} } ,[21]
    where w {\displaystyle \mathbf {w} } is the vector consisting of the diagonal elements of W d {\displaystyle \mathbf {W_{d}} } , vec ( A ) {\displaystyle \operatorname {vec} (\mathbf {A} )} means stack the columns of a matrix A {\displaystyle \mathbf {A} } on top of each other to give a vector.
  15.  
    ( A L ) ( B M ) ( C S ) ( K T ) = ( A B . . . C K ) ( L M . . . S T ) {\displaystyle (\mathbf {A} \bullet \mathbf {L} )(\mathbf {B} \otimes \mathbf {M} )\cdots (\mathbf {C} \otimes \mathbf {S} )(\mathbf {K} \ast \mathbf {T} )=(\mathbf {A} \mathbf {B} ...\mathbf {C} \mathbf {K} )\circ (\mathbf {L} \mathbf {M} ...\mathbf {S} \mathbf {T} )} .[13][15]
    Similarly:
    ( A L ) ( B M ) ( C S ) ( c d ) = ( A B C c ) ( L M S d ) , ( A L ) ( B M ) ( C S ) ( P c Q d ) = ( A B C P c ) ( L M S Q d ) {\displaystyle {\begin{aligned}(\mathbf {A} \bullet \mathbf {L} )(\mathbf {B} \otimes \mathbf {M} )\cdots (\mathbf {C} \otimes \mathbf {S} )(c\otimes d)&=(\mathbf {A} \mathbf {B} \cdots \mathbf {C} c)\circ (\mathbf {L} \mathbf {M} \cdots \mathbf {S} d),\\(\mathbf {A} \bullet \mathbf {L} )(\mathbf {B} \otimes \mathbf {M} )\cdots (\mathbf {C} \otimes \mathbf {S} )(\mathbf {P} c\otimes \mathbf {Q} d)&=(\mathbf {A} \mathbf {B} \cdots \mathbf {C} \mathbf {P} c)\circ (\mathbf {L} \mathbf {M} \cdots \mathbf {S} \mathbf {Q} d)\end{aligned}}} ,
    where c {\displaystyle c} and d {\displaystyle d} are vectors

Examples[18]

( [ 1 0 0 1 1 0 ] [ 1 0 1 0 0 1 ] ) ( [ 1 1 1 1 ] [ 1 1 1 1 ] ) ( [ σ 1 0 0 σ 2 ] [ ρ 1 0 0 ρ 2 ] ) ( [ x 1 x 2 ] [ y 1 y 2 ] ) = ( [ 1 0 0 1 1 0 ] [ 1 0 1 0 0 1 ] ) ( [ 1 1 1 1 ] [ σ 1 0 0 σ 2 ] [ x 1 x 2 ] [ 1 1 1 1 ] [ ρ 1 0 0 ρ 2 ] [ y 1 y 2 ] ) = [ 1 0 0 1 1 0 ] [ 1 1 1 1 ] [ σ 1 0 0 σ 2 ] [ x 1 x 2 ] [ 1 0 1 0 0 1 ] [ 1 1 1 1 ] [ ρ 1 0 0 ρ 2 ] [ y 1 y 2 ] . {\displaystyle {\begin{aligned}&\left({\begin{bmatrix}1&0\\0&1\\1&0\end{bmatrix}}\bullet {\begin{bmatrix}1&0\\1&0\\0&1\end{bmatrix}}\right)\left({\begin{bmatrix}1&1\\1&-1\end{bmatrix}}\otimes {\begin{bmatrix}1&1\\1&-1\end{bmatrix}}\right)\left({\begin{bmatrix}\sigma _{1}&0\\0&\sigma _{2}\\\end{bmatrix}}\otimes {\begin{bmatrix}\rho _{1}&0\\0&\rho _{2}\\\end{bmatrix}}\right)\left({\begin{bmatrix}x_{1}\\x_{2}\end{bmatrix}}\ast {\begin{bmatrix}y_{1}\\y_{2}\end{bmatrix}}\right)\\[5pt]{}={}&\left({\begin{bmatrix}1&0\\0&1\\1&0\end{bmatrix}}\bullet {\begin{bmatrix}1&0\\1&0\\0&1\end{bmatrix}}\right)\left({\begin{bmatrix}1&1\\1&-1\end{bmatrix}}{\begin{bmatrix}\sigma _{1}&0\\0&\sigma _{2}\\\end{bmatrix}}{\begin{bmatrix}x_{1}\\x_{2}\end{bmatrix}}\,\otimes \,{\begin{bmatrix}1&1\\1&-1\end{bmatrix}}{\begin{bmatrix}\rho _{1}&0\\0&\rho _{2}\\\end{bmatrix}}{\begin{bmatrix}y_{1}\\y_{2}\end{bmatrix}}\right)\\[5pt]{}={}&{\begin{bmatrix}1&0\\0&1\\1&0\end{bmatrix}}{\begin{bmatrix}1&1\\1&-1\end{bmatrix}}{\begin{bmatrix}\sigma _{1}&0\\0&\sigma _{2}\\\end{bmatrix}}{\begin{bmatrix}x_{1}\\x_{2}\end{bmatrix}}\,\circ \,{\begin{bmatrix}1&0\\1&0\\0&1\end{bmatrix}}{\begin{bmatrix}1&1\\1&-1\end{bmatrix}}{\begin{bmatrix}\rho _{1}&0\\0&\rho _{2}\\\end{bmatrix}}{\begin{bmatrix}y_{1}\\y_{2}\end{bmatrix}}.\end{aligned}}}

Theorem[18]

If M = T ( 1 ) T ( c ) {\displaystyle M=T^{(1)}\bullet \dots \bullet T^{(c)}} , where T ( 1 ) , , T ( c ) {\displaystyle T^{(1)},\dots ,T^{(c)}} are independent components a random matrix T {\displaystyle T} with independent identically distributed rows T 1 , , T m R d {\displaystyle T_{1},\dots ,T_{m}\in \mathbb {R} ^{d}} , such that

E [ ( T 1 x ) 2 ] = x 2 2 {\displaystyle E\left[(T_{1}x)^{2}\right]=\left\|x\right\|_{2}^{2}} and E [ ( T 1 x ) p ] 1 p a p x 2 {\displaystyle E\left[(T_{1}x)^{p}\right]^{\frac {1}{p}}\leq {\sqrt {ap}}\|x\|_{2}} ,

then for any vector x {\displaystyle x}

| M x 2 x 2 | < ε x 2 {\displaystyle \left|\left\|Mx\right\|_{2}-\left\|x\right\|_{2}\right|<\varepsilon \left\|x\right\|_{2}}

with probability 1 δ {\displaystyle 1-\delta } if the quantity of rows

m = ( 4 a ) 2 c ε 2 log 1 / δ + ( 2 a e ) ε 1 ( log 1 / δ ) c . {\displaystyle m=(4a)^{2c}\varepsilon ^{-2}\log 1/\delta +(2ae)\varepsilon ^{-1}(\log 1/\delta )^{c}.}

In particular, if the entries of T {\displaystyle T} are ± 1 {\displaystyle \pm 1} can get

m = O ( ε 2 log 1 / δ + ε 1 ( 1 c log 1 / δ ) c ) {\displaystyle m=O\left(\varepsilon ^{-2}\log 1/\delta +\varepsilon ^{-1}\left({\frac {1}{c}}\log 1/\delta \right)^{c}\right)}

which matches the Johnson–Lindenstrauss lemma of m = O ( ε 2 log 1 / δ ) {\displaystyle m=O\left(\varepsilon ^{-2}\log 1/\delta \right)} when ε {\displaystyle \varepsilon } is small.

Block face-splitting product

Transposed block face-splitting product in the context of a multi-face radar model[15]

According to the definition of V. Slyusar[9][13] the block face-splitting product of two partitioned matrices with a given quantity of rows in blocks

A = [ A 11 A 12 A 21 A 22 ] , B = [ B 11 B 12 B 21 B 22 ] , {\displaystyle \mathbf {A} =\left[{\begin{array}{c | c}\mathbf {A} _{11}&\mathbf {A} _{12}\\\hline \mathbf {A} _{21}&\mathbf {A} _{22}\end{array}}\right],\quad \mathbf {B} =\left[{\begin{array}{c | c}\mathbf {B} _{11}&\mathbf {B} _{12}\\\hline \mathbf {B} _{21}&\mathbf {B} _{22}\end{array}}\right],}

can be written as :

A [ ] B = [ A 11 B 11 A 12 B 12 A 21 B 21 A 22 B 22 ] . {\displaystyle \mathbf {A} [\bullet ]\mathbf {B} =\left[{\begin{array}{c | c}\mathbf {A} _{11}\bullet \mathbf {B} _{11}&\mathbf {A} _{12}\bullet \mathbf {B} _{12}\\\hline \mathbf {A} _{21}\bullet \mathbf {B} _{21}&\mathbf {A} _{22}\bullet \mathbf {B} _{22}\end{array}}\right].}

The transposed block face-splitting product (or Block column-wise version of the Khatri–Rao product) of two partitioned matrices with a given quantity of columns in blocks has a view:[9][13]

A [ ] B = [ A 11 B 11 A 12 B 12 A 21 B 21 A 22 B 22 ] . {\displaystyle \mathbf {A} [\ast ]\mathbf {B} =\left[{\begin{array}{c | c}\mathbf {A} _{11}\ast \mathbf {B} _{11}&\mathbf {A} _{12}\ast \mathbf {B} _{12}\\\hline \mathbf {A} _{21}\ast \mathbf {B} _{21}&\mathbf {A} _{22}\ast \mathbf {B} _{22}\end{array}}\right].}

Main properties

  1. Transpose:
    ( A [ ] B ) T = A T [ ] B T {\displaystyle \left(\mathbf {A} [\ast ]\mathbf {B} \right)^{\textsf {T}}={\textbf {A}}^{\textsf {T}}[\bullet ]\mathbf {B} ^{\textsf {T}}} [15]

Applications

The Face-splitting product and the Block Face-splitting product used in the tensor-matrix theory of digital antenna arrays. These operations used also in:

See also

Notes

  1. ^ Khatri C. G., C. R. Rao (1968). "Solutions to some functional equations and their applications to characterization of probability distributions". Sankhya. 30: 167–180. Archived from the original (PDF) on 2010-10-23. Retrieved 2008-08-21.
  2. ^ Liu, Shuangzhe (1999). "Matrix Results on the Khatri–Rao and Tracy–Singh Products". Linear Algebra and Its Applications. 289 (1–3): 267–277. doi:10.1016/S0024-3795(98)10209-4.
  3. ^ Zhang X; Yang Z; Cao C. (2002), "Inequalities involving Khatri–Rao products of positive semi-definite matrices", Applied Mathematics E-notes, 2: 117–124
  4. ^ Liu, Shuangzhe; Trenkler, Götz (2008). "Hadamard, Khatri-Rao, Kronecker and other matrix products". International Journal of Information and Systems Sciences. 4 (1): 160–177.
  5. ^ See e.g. H. D. Macedo and J.N. Oliveira. A linear algebra approach to OLAP. Formal Aspects of Computing, 27(2):283–307, 2015.
  6. ^ Lev-Ari, Hanoch (2005-01-01). "Efficient Solution of Linear Matrix Equations with Application to Multistatic Antenna Array Processing" (PDF). Communications in Information & Systems. 05 (1): 123–130. doi:10.4310/CIS.2005.v5.n1.a5. ISSN 1526-7555.
  7. ^ a b Masiero, B.; Nascimento, V. H. (2017-05-01). "Revisiting the Kronecker Array Transform". IEEE Signal Processing Letters. 24 (5): 525–529. Bibcode:2017ISPL...24..525M. doi:10.1109/LSP.2017.2674969. ISSN 1070-9908. S2CID 14166014.
  8. ^ Vanderveen, M. C., Ng, B. C., Papadias, C. B., & Paulraj, A. (n.d.). Joint angle and delay estimation (JADE) for signals in multipath environments. Conference Record of The Thirtieth Asilomar Conference on Signals, Systems and Computers. – DOI:10.1109/acssc.1996.599145
  9. ^ a b c d e f g h Slyusar, V. I. (December 27, 1996). "End products in matrices in radar applications" (PDF). Radioelectronics and Communications Systems. 41 (3): 50–53.
  10. ^ Anna Esteve, Eva Boj & Josep Fortiana (2009): "Interaction Terms in Distance-Based Regression," Communications in Statistics – Theory and Methods, 38:19, p. 3501 [1]
  11. ^ a b c d e Slyusar, V. I. (1997-05-20). "Analytical model of the digital antenna array on a basis of face-splitting matrix products" (PDF). Proc. ICATT-97, Kyiv: 108–109.
  12. ^ a b c d e f g h Slyusar, V. I. (1997-09-15). "New operations of matrices product for applications of radars" (PDF). Proc. Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED-97), Lviv.: 73–74.
  13. ^ a b c d e f g h i j Slyusar, V. I. (March 13, 1998). "A Family of Face Products of Matrices and its Properties" (PDF). Cybernetics and Systems Analysis C/C of Kibernetika I Sistemnyi Analiz. 1999. 35 (3): 379–384. doi:10.1007/BF02733426. S2CID 119661450.
  14. ^ Slyusar, V. I. (2003). "Generalized face-products of matrices in models of digital antenna arrays with nonidentical channels" (PDF). Radioelectronics and Communications Systems. 46 (10): 9–17.
  15. ^ a b c d e Vadym Slyusar. New Matrix Operations for DSP (Lecture). April 1999. – DOI: 10.13140/RG.2.2.31620.76164/1
  16. ^ a b C. Radhakrishna Rao. Estimation of Heteroscedastic Variances in Linear Models.//Journal of the American Statistical Association, Vol. 65, No. 329 (Mar., 1970), pp. 161–172
  17. ^ Kasiviswanathan, Shiva Prasad, et al. «The price of privately releasing contingency tables and the spectra of random matrices with correlated rows.» Proceedings of the forty-second ACM symposium on Theory of computing. 2010.
  18. ^ a b c d Thomas D. Ahle, Jakob Bæk Tejs Knudsen. Almost Optimal Tensor Sketch. Published 2019. Mathematics, Computer Science, ArXiv
  19. ^ Ninh, Pham; Pagh, Rasmus (2013). Fast and scalable polynomial kernels via explicit feature maps. SIGKDD international conference on Knowledge discovery and data mining. Association for Computing Machinery. doi:10.1145/2487575.2487591.
  20. ^ a b Eilers, Paul H.C.; Marx, Brian D. (2003). "Multivariate calibration with temperature interaction using two-dimensional penalized signal regression". Chemometrics and Intelligent Laboratory Systems. 66 (2): 159–174. doi:10.1016/S0169-7439(03)00029-7.
  21. ^ a b c Currie, I. D.; Durban, M.; Eilers, P. H. C. (2006). "Generalized linear array models with applications to multidimensional smoothing". Journal of the Royal Statistical Society. 68 (2): 259–280. doi:10.1111/j.1467-9868.2006.00543.x. S2CID 10261944.
  22. ^ Bryan Bischof. Higher order co-occurrence tensors for hypergraphs via face-splitting. Published 15 February 2020, Mathematics, Computer Science, ArXiv
  23. ^ Johannes W. R. Martini, Jose Crossa, Fernando H. Toledo, Jaime Cuevas. On Hadamard and Kronecker products in covariance structures for genotype x environment interaction.//Plant Genome. 2020;13:e20033. Page 5. [2]

References

  • Khatri C. G., C. R. Rao (1968). "Solutions to some functional equations and their applications to characterization of probability distributions". Sankhya. 30: 167–180. Archived from the original on 2010-10-23. Retrieved 2008-08-21.
  • Rao C.R.; Rao M. Bhaskara (1998), Matrix Algebra and Its Applications to Statistics and Econometrics, World Scientific, p. 216
  • Zhang X; Yang Z; Cao C. (2002), "Inequalities involving Khatri–Rao products of positive semi-definite matrices", Applied Mathematics E-notes, 2: 117–124
  • Liu Shuangzhe; Trenkler Götz (2008), "Hadamard, Khatri-Rao, Kronecker and other matrix products", International Journal of Information and Systems Sciences, 4: 160–177
  • v
  • t
  • e
Basic concepts
Three dimensional Euclidean space
MatricesBilinearMultilinear algebraVector space constructionsNumerical
  • Category