Kapteyn series

Kapteyn series is a series expansion of analytic functions on a domain in terms of the Bessel function of the first kind. Kapteyn series are named after Willem Kapteyn, who first studied such series in 1893.[1][2] Let f {\displaystyle f} be a function analytic on the domain

D a = { z C : Ω ( z ) = | z exp 1 z 2 1 + 1 z 2 | a } {\displaystyle D_{a}=\left\{z\in \mathbb {C} :\Omega (z)=\left|{\frac {z\exp {\sqrt {1-z^{2}}}}{1+{\sqrt {1-z^{2}}}}}\right|\leq a\right\}}

with a < 1 {\displaystyle a<1} . Then f {\displaystyle f} can be expanded in the form

f ( z ) = α 0 + 2 n = 1 α n J n ( n z ) ( z D a ) , {\displaystyle f(z)=\alpha _{0}+2\sum _{n=1}^{\infty }\alpha _{n}J_{n}(nz)\quad (z\in D_{a}),}

where

α n = 1 2 π i Θ n ( z ) f ( z ) d z . {\displaystyle \alpha _{n}={\frac {1}{2\pi i}}\oint \Theta _{n}(z)f(z)dz.}

The path of the integration is the boundary of D a {\displaystyle D_{a}} . Here Θ 0 ( z ) = 1 / z {\displaystyle \Theta _{0}(z)=1/z} , and for n > 0 {\displaystyle n>0} , Θ n ( z ) {\displaystyle \Theta _{n}(z)} is defined by

Θ n ( z ) = 1 4 k = 0 [ n 2 ] ( n 2 k ) 2 ( n k 1 ) ! k ! ( n z 2 ) 2 k n {\displaystyle \Theta _{n}(z)={\frac {1}{4}}\sum _{k=0}^{\left[{\frac {n}{2}}\right]}{\frac {(n-2k)^{2}(n-k-1)!}{k!}}\left({\frac {nz}{2}}\right)^{2k-n}}

Kapteyn's series are important in physical problems. Among other applications, the solution E {\displaystyle E} of Kepler's equation M = E e sin E {\displaystyle M=E-e\sin E} can be expressed via a Kapteyn series:[2][3]

E = M + 2 n = 1 sin ( n M ) n J n ( n e ) . {\displaystyle E=M+2\sum _{n=1}^{\infty }{\frac {\sin(nM)}{n}}J_{n}(ne).}

Relation between the Taylor coefficients and the α n {\displaystyle \alpha _{n}} coefficients of a function

Let us suppose that the Taylor series of f {\displaystyle f} reads as

f ( z ) = n = 0 a n z n . {\displaystyle f(z)=\sum _{n=0}^{\infty }a_{n}z^{n}.}

Then the α n {\displaystyle \alpha _{n}} coefficients in the Kapteyn expansion of f {\displaystyle f} can be determined as follows.[4]: 571 

α 0 = a 0 , α n = 1 4 k = 0 n 2 ( n 2 k ) 2 ( n k 1 ) ! k ! ( n / 2 ) ( n 2 k + 1 ) a n 2 k ( n 1 ) . {\displaystyle {\begin{aligned}\alpha _{0}&=a_{0},\\\alpha _{n}&={\frac {1}{4}}\sum _{k=0}^{\left\lfloor {\frac {n}{2}}\right\rfloor }{\frac {(n-2k)^{2}(n-k-1)!}{k!(n/2)^{(n-2k+1)}}}a_{n-2k}\quad (n\geq 1).\end{aligned}}}

Examples

The Kapteyn series of the powers of z {\displaystyle z} are found by Kapteyn himself:[1]: 103,  [4]: 565 

( z 2 ) n = n 2 m = 0 ( n + m 1 ) ! ( n + 2 m ) n + 1 m ! J n + 2 m { ( n + 2 m ) z } ( z D 1 ) . {\displaystyle \left({\frac {z}{2}}\right)^{n}=n^{2}\sum _{m=0}^{\infty }{\frac {(n+m-1)!}{(n+2m)^{n+1}\,m!}}J_{n+2m}\{(n+2m)z\}\quad (z\in D_{1}).}

For n = 1 {\displaystyle n=1} it follows (see also [4]: 567 )

z = 2 k = 0 J 2 k + 1 ( ( 2 k + 1 ) z ) ( 2 k + 1 ) 2 , {\displaystyle z=2\sum _{k=0}^{\infty }{\frac {J_{2k+1}((2k+1)z)}{(2k+1)^{2}}},}

and for n = 2 {\displaystyle n=2} [4]: 566 

z 2 = 2 k = 1 J 2 k ( 2 k z ) k 2 . {\displaystyle z^{2}=2\sum _{k=1}^{\infty }{\frac {J_{2k}(2kz)}{k^{2}}}.}

Furthermore, inside the region D 1 {\displaystyle D_{1}} ,[4]: 559 

1 1 z = 1 + 2 k = 1 J k ( k z ) . {\displaystyle {\frac {1}{1-z}}=1+2\sum _{k=1}^{\infty }J_{k}(kz).}

See also

References

  1. ^ a b Kapteyn, W. (1893). Recherches sur les functions de Fourier-Bessel. Ann. Sci. de l’École Norm. Sup., 3, 91-120.
  2. ^ a b Baricz, Árpád; Jankov Maširević, Dragana; Pogány, Tibor K. (2017). "Series of Bessel and Kummer-Type Functions". Lecture Notes in Mathematics. Cham: Springer International Publishing. doi:10.1007/978-3-319-74350-9. ISBN 978-3-319-74349-3. ISSN 0075-8434.
  3. ^ Borghi, Riccardo (2021). "Solving Kepler's equation via nonlinear sequence transformations". arXiv:2112.15154 [math.CA].
  4. ^ a b c d e Watson, G. N. (2011-06-06). A treatise on the theory of Bessel functions (1944 ed.). Cambridge University Press. OL 22965724M.