K-function

In mathematics, the K-function, typically denoted K(z), is a generalization of the hyperfactorial to complex numbers, similar to the generalization of the factorial to the gamma function.

Definition

Formally, the K-function is defined as

K ( z ) = ( 2 π ) z 1 2 exp [ ( z 2 ) + 0 z 1 ln Γ ( t + 1 ) d t ] . {\displaystyle K(z)=(2\pi )^{-{\frac {z-1}{2}}}\exp \left[{\binom {z}{2}}+\int _{0}^{z-1}\ln \Gamma (t+1)\,dt\right].}

It can also be given in closed form as

K ( z ) = exp [ ζ ( 1 , z ) ζ ( 1 ) ] {\displaystyle K(z)=\exp {\bigl [}\zeta '(-1,z)-\zeta '(-1){\bigr ]}}

where ζ′(z) denotes the derivative of the Riemann zeta function, ζ(a,z) denotes the Hurwitz zeta function and

ζ ( a , z )   = d e f   ζ ( s , z ) s | s = a . {\displaystyle \zeta '(a,z)\ {\stackrel {\mathrm {def} }{=}}\ \left.{\frac {\partial \zeta (s,z)}{\partial s}}\right|_{s=a}.}

Another expression using the polygamma function is[1]

K ( z ) = exp [ ψ ( 2 ) ( z ) + z 2 z 2 z 2 ln 2 π ] {\displaystyle K(z)=\exp \left[\psi ^{(-2)}(z)+{\frac {z^{2}-z}{2}}-{\frac {z}{2}}\ln 2\pi \right]}

Or using the balanced generalization of the polygamma function:[2]

K ( z ) = A exp [ ψ ( 2 , z ) + z 2 z 2 ] {\displaystyle K(z)=A\exp \left[\psi (-2,z)+{\frac {z^{2}-z}{2}}\right]}

where A is the Glaisher constant.

Similar to the Bohr-Mollerup Theorem for the gamma function, the log K-function is the unique (up to an additive constant) eventually 2-convex solution to the equation Δ f ( x ) = x ln ( x ) {\displaystyle \Delta f(x)=x\ln(x)} where Δ {\displaystyle \Delta } is the forward difference operator.[3]

Properties

It can be shown that for α > 0:

α α + 1 ln K ( x ) d x 0 1 ln K ( x ) d x = 1 2 α 2 ( ln α 1 2 ) {\displaystyle \int _{\alpha }^{\alpha +1}\ln K(x)\,dx-\int _{0}^{1}\ln K(x)\,dx={\tfrac {1}{2}}\alpha ^{2}\left(\ln \alpha -{\tfrac {1}{2}}\right)}

This can be shown by defining a function f such that:

f ( α ) = α α + 1 ln K ( x ) d x {\displaystyle f(\alpha )=\int _{\alpha }^{\alpha +1}\ln K(x)\,dx}

Differentiating this identity now with respect to α yields:

f ( α ) = ln K ( α + 1 ) ln K ( α ) {\displaystyle f'(\alpha )=\ln K(\alpha +1)-\ln K(\alpha )}

Applying the logarithm rule we get

f ( α ) = ln K ( α + 1 ) K ( α ) {\displaystyle f'(\alpha )=\ln {\frac {K(\alpha +1)}{K(\alpha )}}}

By the definition of the K-function we write

f ( α ) = α ln α {\displaystyle f'(\alpha )=\alpha \ln \alpha }

And so

f ( α ) = 1 2 α 2 ( ln α 1 2 ) + C {\displaystyle f(\alpha )={\tfrac {1}{2}}\alpha ^{2}\left(\ln \alpha -{\tfrac {1}{2}}\right)+C}

Setting α = 0 we have

0 1 ln K ( x ) d x = lim t 0 [ 1 2 t 2 ( ln t 1 2 ) ] + C   = C {\displaystyle \int _{0}^{1}\ln K(x)\,dx=\lim _{t\rightarrow 0}\left[{\tfrac {1}{2}}t^{2}\left(\ln t-{\tfrac {1}{2}}\right)\right]+C\ =C}

Now one can deduce the identity above.

The K-function is closely related to the gamma function and the Barnes G-function; for natural numbers n, we have

K ( n ) = ( Γ ( n ) ) n 1 G ( n ) . {\displaystyle K(n)={\frac {{\bigl (}\Gamma (n){\bigr )}^{n-1}}{G(n)}}.}

More prosaically, one may write

K ( n + 1 ) = 1 1 2 2 3 3 n n . {\displaystyle K(n+1)=1^{1}\cdot 2^{2}\cdot 3^{3}\cdots n^{n}.}

The first values are

1, 4, 108, 27648, 86400000, 4031078400000, 3319766398771200000, ... (sequence A002109 in the OEIS).

References

  1. ^ Adamchik, Victor S. (1998), "PolyGamma Functions of Negative Order", Journal of Computational and Applied Mathematics, 100: 191–199, archived from the original on 2016-03-03
  2. ^ Espinosa, Olivier; Moll, Victor Hugo, "A Generalized polygamma function" (PDF), Integral Transforms and Special Functions, 15 (2): 101–115, archived (PDF) from the original on 2023-05-14
  3. ^ "A Generalization of Bohr-Mollerup's Theorem for Higher Order Convex Functions: a Tutorial" (PDF). Bitstream: 14. Archived (PDF) from the original on 2023-04-05.

External links

  • Weisstein, Eric W. "K-Function". MathWorld.