Ishimori equation

The Ishimori equation is a partial differential equation proposed by the Japanese mathematician Ishimori (1984). Its interest is as the first example of a nonlinear spin-one field model in the plane that is integrable (Sattinger, Tracy & Venakides 1991, p. 78).

Equation

The Ishimori equation has the form

S t = S ( 2 S x 2 + 2 S y 2 ) + u x S y + u y S x , {\displaystyle {\frac {\partial \mathbf {S} }{\partial t}}=\mathbf {S} \wedge \left({\frac {\partial ^{2}\mathbf {S} }{\partial x^{2}}}+{\frac {\partial ^{2}\mathbf {S} }{\partial y^{2}}}\right)+{\frac {\partial u}{\partial x}}{\frac {\partial \mathbf {S} }{\partial y}}+{\frac {\partial u}{\partial y}}{\frac {\partial \mathbf {S} }{\partial x}},}
(1a)
2 u x 2 α 2 2 u y 2 = 2 α 2 S ( S x S y ) . {\displaystyle {\frac {\partial ^{2}u}{\partial x^{2}}}-\alpha ^{2}{\frac {\partial ^{2}u}{\partial y^{2}}}=-2\alpha ^{2}\mathbf {S} \cdot \left({\frac {\partial \mathbf {S} }{\partial x}}\wedge {\frac {\partial \mathbf {S} }{\partial y}}\right).}
(1b)

Lax representation

The Lax representation

L t = A L L A {\displaystyle L_{t}=AL-LA}
(2)

of the equation is given by

L = Σ x + α I y , {\displaystyle L=\Sigma \partial _{x}+\alpha I\partial _{y},}
(3a)
A = 2 i Σ x 2 + ( i Σ x i α Σ y Σ + u y I α 3 u x Σ ) x . {\displaystyle A=-2i\Sigma \partial _{x}^{2}+(-i\Sigma _{x}-i\alpha \Sigma _{y}\Sigma +u_{y}I-\alpha ^{3}u_{x}\Sigma )\partial _{x}.}
(3b)

Here

Σ = j = 1 3 S j σ j , {\displaystyle \Sigma =\sum _{j=1}^{3}S_{j}\sigma _{j},}
(4)

the σ i {\displaystyle \sigma _{i}} are the Pauli matrices and I {\displaystyle I} is the identity matrix.

Reductions

The Ishimori equation admits an important reduction: in 1+1 dimensions it reduces to the continuous classical Heisenberg ferromagnet equation (CCHFE). The CCHFE is integrable.

Equivalent counterpart

The equivalent counterpart of the Ishimori equation is the Davey-Stewartson equation.

See also

References

  • Gutshabash, E.Sh. (2003), "Generalized Darboux transform in the Ishimori magnet model on the background of spiral structures", JETP Letters, 78 (11): 740–744, arXiv:nlin/0409001, Bibcode:2003JETPL..78..740G, doi:10.1134/1.1648299, S2CID 16905805
  • Ishimori, Yuji (1984), "Multi-vortex solutions of a two-dimensional nonlinear wave equation", Prog. Theor. Phys., 72 (1): 33–37, Bibcode:1984PThPh..72...33I, doi:10.1143/PTP.72.33, MR 0760959
  • Konopelchenko, B.G. (1993), Solitons in multidimensions, World Scientific, ISBN 978-981-02-1348-0
  • Martina, L.; Profilo, G.; Soliani, G.; Solombrino, L. (1994), "Nonlinear excitations in a Hamiltonian spin-field model in 2+1 dimensions", Phys. Rev. B, 49 (18): 12915–12922, Bibcode:1994PhRvB..4912915M, doi:10.1103/PhysRevB.49.12915, PMID 10010201
  • Sattinger, David H.; Tracy, C. A.; Venakides, S., eds. (1991), Inverse Scattering and Applications, Contemporary Mathematics, vol. 122, Providence, RI: American Mathematical Society, doi:10.1090/conm/122, ISBN 0-8218-5129-2, MR 1135850
  • Sung, Li-yeng (1996), "The Cauchy problem for the Ishimori equation", Journal of Functional Analysis, 139: 29–67, doi:10.1006/jfan.1996.0078

External links

  • Ishimori_system at the dispersive equations wiki


  • v
  • t
  • e
Stub icon

This electromagnetism-related article is a stub. You can help Wikipedia by expanding it.

  • v
  • t
  • e