Ideal norm

In commutative algebra, the norm of an ideal is a generalization of a norm of an element in the field extension. It is particularly important in number theory since it measures the size of an ideal of a complicated number ring in terms of an ideal in a less complicated ring. When the less complicated number ring is taken to be the ring of integers, Z, then the norm of a nonzero ideal I of a number ring R is simply the size of the finite quotient ring R/I.

Relative norm

Let A be a Dedekind domain with field of fractions K and integral closure of B in a finite separable extension L of K. (this implies that B is also a Dedekind domain.) Let I A {\displaystyle {\mathcal {I}}_{A}} and I B {\displaystyle {\mathcal {I}}_{B}} be the ideal groups of A and B, respectively (i.e., the sets of nonzero fractional ideals.) Following the technique developed by Jean-Pierre Serre, the norm map

N B / A : I B I A {\displaystyle N_{B/A}\colon {\mathcal {I}}_{B}\to {\mathcal {I}}_{A}}

is the unique group homomorphism that satisfies

N B / A ( q ) = p [ B / q : A / p ] {\displaystyle N_{B/A}({\mathfrak {q}})={\mathfrak {p}}^{[B/{\mathfrak {q}}:A/{\mathfrak {p}}]}}

for all nonzero prime ideals q {\displaystyle {\mathfrak {q}}} of B, where p = q A {\displaystyle {\mathfrak {p}}={\mathfrak {q}}\cap A} is the prime ideal of A lying below q {\displaystyle {\mathfrak {q}}} .


Alternatively, for any b I B {\displaystyle {\mathfrak {b}}\in {\mathcal {I}}_{B}} one can equivalently define N B / A ( b ) {\displaystyle N_{B/A}({\mathfrak {b}})} to be the fractional ideal of A generated by the set { N L / K ( x ) | x b } {\displaystyle \{N_{L/K}(x)|x\in {\mathfrak {b}}\}} of field norms of elements of B.[1]

For a I A {\displaystyle {\mathfrak {a}}\in {\mathcal {I}}_{A}} , one has N B / A ( a B ) = a n {\displaystyle N_{B/A}({\mathfrak {a}}B)={\mathfrak {a}}^{n}} , where n = [ L : K ] {\displaystyle n=[L:K]} .

The ideal norm of a principal ideal is thus compatible with the field norm of an element:

N B / A ( x B ) = N L / K ( x ) A . {\displaystyle N_{B/A}(xB)=N_{L/K}(x)A.} [2]

Let L / K {\displaystyle L/K} be a Galois extension of number fields with rings of integers O K O L {\displaystyle {\mathcal {O}}_{K}\subset {\mathcal {O}}_{L}} .

Then the preceding applies with A = O K , B = O L {\displaystyle A={\mathcal {O}}_{K},B={\mathcal {O}}_{L}} , and for any b I O L {\displaystyle {\mathfrak {b}}\in {\mathcal {I}}_{{\mathcal {O}}_{L}}} we have

N O L / O K ( b ) = K σ Gal ( L / K ) σ ( b ) , {\displaystyle N_{{\mathcal {O}}_{L}/{\mathcal {O}}_{K}}({\mathfrak {b}})=K\cap \prod _{\sigma \in \operatorname {Gal} (L/K)}\sigma ({\mathfrak {b}}),}

which is an element of I O K {\displaystyle {\mathcal {I}}_{{\mathcal {O}}_{K}}} .

The notation N O L / O K {\displaystyle N_{{\mathcal {O}}_{L}/{\mathcal {O}}_{K}}} is sometimes shortened to N L / K {\displaystyle N_{L/K}} , an abuse of notation that is compatible with also writing N L / K {\displaystyle N_{L/K}} for the field norm, as noted above.


In the case K = Q {\displaystyle K=\mathbb {Q} } , it is reasonable to use positive rational numbers as the range for N O L / Z {\displaystyle N_{{\mathcal {O}}_{L}/\mathbb {Z} }\,} since Z {\displaystyle \mathbb {Z} } has trivial ideal class group and unit group { ± 1 } {\displaystyle \{\pm 1\}} , thus each nonzero fractional ideal of Z {\displaystyle \mathbb {Z} } is generated by a uniquely determined positive rational number. Under this convention the relative norm from L {\displaystyle L} down to K = Q {\displaystyle K=\mathbb {Q} } coincides with the absolute norm defined below.

Absolute norm

Let L {\displaystyle L} be a number field with ring of integers O L {\displaystyle {\mathcal {O}}_{L}} , and a {\displaystyle {\mathfrak {a}}} a nonzero (integral) ideal of O L {\displaystyle {\mathcal {O}}_{L}} .

The absolute norm of a {\displaystyle {\mathfrak {a}}} is

N ( a ) := [ O L : a ] = | O L / a | . {\displaystyle N({\mathfrak {a}}):=\left[{\mathcal {O}}_{L}:{\mathfrak {a}}\right]=\left|{\mathcal {O}}_{L}/{\mathfrak {a}}\right|.\,}

By convention, the norm of the zero ideal is taken to be zero.

If a = ( a ) {\displaystyle {\mathfrak {a}}=(a)} is a principal ideal, then

N ( a ) = | N L / Q ( a ) | {\displaystyle N({\mathfrak {a}})=\left|N_{L/\mathbb {Q} }(a)\right|} .[3]

The norm is completely multiplicative: if a {\displaystyle {\mathfrak {a}}} and b {\displaystyle {\mathfrak {b}}} are ideals of O L {\displaystyle {\mathcal {O}}_{L}} , then

N ( a b ) = N ( a ) N ( b ) {\displaystyle N({\mathfrak {a}}\cdot {\mathfrak {b}})=N({\mathfrak {a}})N({\mathfrak {b}})} .[3]

Thus the absolute norm extends uniquely to a group homomorphism

N : I O L Q > 0 × , {\displaystyle N\colon {\mathcal {I}}_{{\mathcal {O}}_{L}}\to \mathbb {Q} _{>0}^{\times },}

defined for all nonzero fractional ideals of O L {\displaystyle {\mathcal {O}}_{L}} .

The norm of an ideal a {\displaystyle {\mathfrak {a}}} can be used to give an upper bound on the field norm of the smallest nonzero element it contains:

there always exists a nonzero a a {\displaystyle a\in {\mathfrak {a}}} for which

| N L / Q ( a ) | ( 2 π ) s | Δ L | N ( a ) , {\displaystyle \left|N_{L/\mathbb {Q} }(a)\right|\leq \left({\frac {2}{\pi }}\right)^{s}{\sqrt {\left|\Delta _{L}\right|}}N({\mathfrak {a}}),}

where

  • Δ L {\displaystyle \Delta _{L}} is the discriminant of L {\displaystyle L} and
  • s {\displaystyle s} is the number of pairs of (non-real) complex embeddings of L into C {\displaystyle \mathbb {C} } (the number of complex places of L).[4]

See also

References

  1. ^ Janusz, Gerald J. (1996), Algebraic number fields, Graduate Studies in Mathematics, vol. 7 (second ed.), Providence, Rhode Island: American Mathematical Society, Proposition I.8.2, ISBN 0-8218-0429-4, MR 1362545
  2. ^ Serre, Jean-Pierre (1979), Local Fields, Graduate Texts in Mathematics, vol. 67, translated by Greenberg, Marvin Jay, New York: Springer-Verlag, 1.5, Proposition 14, ISBN 0-387-90424-7, MR 0554237
  3. ^ a b Marcus, Daniel A. (1977), Number fields, Universitext, New York: Springer-Verlag, Theorem 22c, ISBN 0-387-90279-1, MR 0457396
  4. ^ Neukirch, Jürgen (1999), Algebraic number theory, Grundlehren der mathematischen Wissenschaften, vol. 322, Berlin: Springer-Verlag, Lemma 6.2, doi:10.1007/978-3-662-03983-0, ISBN 3-540-65399-6, MR 1697859