Heptane

Heptane
Skeletal formula of heptane
Skeletal formula of heptane of all implicit carbons shown, and all explicit hydrogens added
Ball-and-stick model of the heptane molecule
Names
Preferred IUPAC name
Heptane[2]
Other names
Septane[1]
Identifiers
CAS Number
  • 142-82-5 checkY
3D model (JSmol)
  • Interactive image
Beilstein Reference
1730763
ChEBI
  • CHEBI:43098 checkY
ChEMBL
  • ChEMBL134658 checkY
ChemSpider
  • 8560 checkY
EC Number
  • 205-563-8
Gmelin Reference
49760
MeSH n-heptane
PubChem CID
  • 8900
RTECS number
  • MI7700000
UNII
  • 456148SDMJ checkY
UN number 1206
InChI
  • InChI=1S/C7H16/c1-3-5-7-6-4-2/h3-7H2,1-2H3 checkY
    Key: IMNFDUFMRHMDMM-UHFFFAOYSA-N checkY
  • CCCCCCC
Properties
Chemical formula
C7H16
Molar mass 100.205 g·mol−1
Appearance Colourless liquid
Odor Petrolic
Density 0.6795 g cm−3[3]
Melting point −90.549[3] °C (−130.988 °F; 182.601 K)
Boiling point 98.38[3] °C (209.08 °F; 371.53 K)
0.0003% (20 °C)[4]
log P 4.274
Vapor pressure 5.33 kPa (at 20.0 °C)
Henry's law
constant (kH)
12 nmol Pa−1 kg−1
−85.24·10−6 cm3/mol
1.3855[3]
Viscosity 0.389 mPa·s[5]
0.0 D
Thermochemistry
224.64 J K−1 mol−1
Std molar
entropy (S298)
328.57 J K−1 mol−1
Std enthalpy of
formation fH298)
−225.2 – −223.6 kJ mol−1
Std enthalpy of
combustion cH298)
−4.825 – −4.809 MJ mol−1
Hazards
GHS labelling:
GHS02: Flammable GHS07: Exclamation mark GHS08: Health hazard GHS09: Environmental hazard
Danger
H225, H304, H315, H336, H410
P210, P261, P273, P301+P310, P331
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 1: Exposure would cause irritation but only minor residual injury. E.g. turpentineFlammability 3: Liquids and solids that can be ignited under almost all ambient temperature conditions. Flash point between 23 and 38 °C (73 and 100 °F). E.g. gasolineInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
1
3
0
Flash point −4.0 °C (24.8 °F; 269.1 K)
Autoignition
temperature
223.0 °C (433.4 °F; 496.1 K)
Explosive limits 1.05–6.7%
Lethal dose or concentration (LD, LC):
17,986 ppm (mouse, 2 hr)[6]
16,000 ppm (human)
15,000 ppm (mouse, 30 min)[6]
NIOSH (US health exposure limits):
PEL (Permissible)
TWA 500 ppm (2000 mg/m3)[4]
REL (Recommended)
TWA 85 ppm (350 mg/m3) C 440 ppm (1800 mg/m3) [15-minute][4]
IDLH (Immediate danger)
750 ppm[4]
Related compounds
Related alkanes
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)
Infobox references
Chemical compound

Heptane or n-heptane is the straight-chain alkane with the chemical formula H3C(CH2)5CH3 or C7H16. When used as a test fuel component in anti-knock test engines, a 100% heptane fuel is the zero point of the octane rating scale (the 100 point is 100% iso-octane). Octane number equates to the anti-knock qualities of a comparison mixture of heptane and iso-octane which is expressed as the percentage of iso-octane in heptane, and is listed on pumps for gasoline (petrol) dispensed globally.

Uses

Heptane and its many isomers are widely used in laboratories as a non-polar solvent. As a liquid, it is ideal for transport and storage. In the grease spot test, heptane is used to dissolve an oil spot to show the previous presence of organic compounds on a stained paper. This is done by shaking the stained paper in a heptane solution for about half a minute.[citation needed]

Aqueous bromine may be distinguished from aqueous iodine by its appearance after extraction into heptane. In water, both bromine and iodine appear brown. However, iodine turns purple when dissolved in heptane, whereas the bromine solution remains brown.

Heptane is commercially available as mixed isomers for use in paints and coatings, as the rubber cement solvent "Bestine", the outdoor stove fuel "Powerfuel" by Primus, as pure n-heptane for research and development and pharmaceutical manufacturing and as a minor component of gasoline (petrol). On average, gasoline is about 1% heptane.[7][8]

Heptane is also used as an adhesive remover by stamp collectors. Since 1974, the United States Postal Service has issued self-adhesive stamps that some collectors find difficult to separate from envelopes via the traditional method of soaking in water. Heptane-based products like Bestine, as well as limonene-based products, have become popular solvents for removing stamps more easily.[9]

Octane rating scale

n-Heptane is defined as the zero point of the octane rating scale. It is a lighter component in gasoline, burns more explosively, causing engine pre-ignition (knocking) in its pure form, as opposed to octane isomers, which burn more slowly and give less knocking. It was originally chosen as the zero point of the scale because of the availability of very high purity n-heptane, unmixed with other isomers of heptane or other alkanes, distilled from the resin of Jeffrey pine and from the fruit of Pittosporum resiniferum. Other sources of heptane and octane, produced from crude oil, contain a mixture of different isomers with greatly differing ratings, and do not give as precise a zero point.

Isomers and enantiomers

Heptane has nine isomers, or eleven if enantiomers are counted:

Preparation

The linear n-heptane can be obtained from Jeffrey pine oil.[11] The six branched isomers without a quaternary carbon can be prepared by creating a suitable secondary or tertiary alcohol by the Grignard reaction, converting it to an alkene by dehydration, and hydrogenating the latter.[11] The 2,2-dimethylpentane isomer can be prepared by reacting tert-butyl chloride with n-propyl magnesium bromide.[11] The 3,3-dimethylpentane isomer can be prepared from tert-amyl chloride and ethyl magnesium bromide.[11]

Health risks

Acute exposure to heptane vapors can cause dizziness, stupor, incoordination, loss of appetite, nausea, dermatitis, chemical pneumonitis, unconsciousness, or possible peripheral neuropathy.[12]

In a CDC study, it was found that prolonged exposure to heptane may also cause a state of intoxication and uncontrolled hilarity in some participants and a stupor lasting for 30 minutes after exposure for others.[13]

According to information from the New Jersey Department of Health and Senior Services, n-heptane can penetrate through the skin and further health effects may occur immediately or shortly after exposure to it. Exposure to n-heptane may lead to: short-term health effects like irritation of the eyes, nose, or throat, headache, dizziness, or loss of consciousness; and chronic health effects, like reduced memory and concentration, sleep disturbance, or reduced coordination due to its effects on the nervous system.[14]

References

  1. ^ Hofmann, August Wilhelm Von (1 January 1867). "I. On the action of trichloride of phosphorus on the salts of the aromatic monamines". Proceedings of the Royal Society of London. 15: 54–62. doi:10.1098/rspl.1866.0018. S2CID 98496840.
  2. ^ "n-heptane – Compound Summary". PubChem Compound. USA: National Center for Biotechnology Information. 16 September 2004. Identification and Related Records. Retrieved 2 January 2012.
  3. ^ a b c d Haynes, William M., ed. (2011). CRC Handbook of Chemistry and Physics (92nd ed.). Boca Raton, FL: CRC Press. p. 3.290. ISBN 1-4398-5511-0.
  4. ^ a b c d NIOSH Pocket Guide to Chemical Hazards. "#0312". National Institute for Occupational Safety and Health (NIOSH).
  5. ^ Dymond, J. H.; Oye, H. A. (1994). "Viscosity of Selected Liquid n-Alkanes". Journal of Physical and Chemical Reference Data. 23 (1): 41–53. Bibcode:1994JPCRD..23...41D. doi:10.1063/1.555943. ISSN 0047-2689.
  6. ^ a b "n-Heptane". Immediately Dangerous to Life or Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).
  7. ^ Conner, Teri L.; Lonneman, William A.; Seila, Robert L. (1 May 1995). "Transportation-Related Volatile Hydrocarbon Source Profiles Measured in Atlanta". Journal of the Air & Waste Management Association. 45 (5): 383–394. Bibcode:1995JAWMA..45..383C. doi:10.1080/10473289.1995.10467370.
  8. ^ Schauer, James J.; Kleeman, Michael J.; Cass, Glen R.; Simoneit, Bernd R. T. (1 March 2002). "Measurement of Emissions from Air Pollution Sources. 5. C 1 −C 32 Organic Compounds from Gasoline-Powered Motor Vehicles". Environmental Science & Technology. 36 (6): 1169–1180. Bibcode:2002EnST...36.1169S. doi:10.1021/es0108077. PMID 11944666.
  9. ^ Butler, Peter. "It's Like Magic: Removing Self-Adhesive Stamps from Paper" (PDF). American Philatelic Society. Retrieved 15 June 2020.
  10. ^ Isomers Archived 27 September 2011 at the Wayback Machine. Members.optushome.com.au. Retrieved on 2012-03-04.
  11. ^ a b c d Graham Edgar, George Calingaert, and R. E. Marker (1929): "The preparation and properties of the isomeric heptanes. Part I. Preparation". Journal of the American Chemical Society, volume 51, issue 5, pages 1483–1491. doi:10.1021/ja01380a027
  12. ^ Patty, FA; Yant, WP (1929). "Odor intensity and symptoms produced by commercial propane, butane, pentane, hexane, and heptane vapor". Report of Investigations. 2979 (December). US Department of Commerce, U.S. Bureau of Mines: 1–10.
  13. ^ "CDC - Immediately Dangerous to Life or Health Concentrations (IDLH): n-Heptane - NIOSH Publications and Products". www.cdc.gov. 2 November 2018. Retrieved 6 December 2021.
  14. ^ "n- HEPTANE" (PDF).

External links

  • International Chemical Safety Card 0657 (n-heptane)
  • International Chemical Safety Card 0658 (2-methylhexane)
  • NIOSH Pocket Guide to Chemical Hazards
  • Material Safety Data Sheet for Heptane
  • Phytochemical database entry
  • v
  • t
  • e
  • v
  • t
  • e
Alkali metal
(Group 1) hydrides
Alkaline
(Group 2)
earth hydrides
Monohydrides
Dihydrides
  • BeH2
  • MgH2
  • CaH2
  • SrH2
  • BaH2
Group 13
hydrides
Boranes
  • BH3
  • BH
  • B2H6
  • B2H2
  • B2H4
  • B4H10
  • B5H9
  • B5H11
  • B6H10
  • B6H12
  • B10H14
  • B18H22
Alanes
  • AlH3
  • Al2H6
Gallanes
  • GaH3
  • Ga2H6
Indiganes
  • InH3
  • In2H6
Thallanes
  • TlH3
  • Tl2H6
Nihonanes (predicted)
  • NhH
  • NhH3
  • Nh2H6
  • NhH5
Group 14 hydrides
Hydrocarbons
  • CH
  • CH2
  • CH3
  • C2H
Silanes
  • SiH4
  • Si2H6
  • Si3H8
  • Si4H10
  • Si5H12
  • Si6H14
  • Si7H16
  • Si8H18
  • Si9H20
  • Si10H22
  • more...
Silenes
  • Si2H4
Silynes
Germanes
  • GeH4
  • Ge2H6
  • Ge3H8
  • Ge4H10
  • Ge5H12
Stannanes
  • SnH4
  • Sn2H6
Plumbanes
  • PbH4
Flerovanes (predicted)
  • FlH
  • FlH2
  • FlH4
Pnictogen
(Group 15) hydrides
Azanes
  • NH3
  • N2H4
  • N3H5
  • N4H6
  • N5H7
  • N6H8
  • N7H9
  • N8H10
  • N9H11
  • N10H12
  • more...
Azenes
  • N2H2
  • N3H3
  • N4H4
Phosphanes
  • PH3
  • P2H4
  • P3H5
  • P4H6
  • P5H7
  • P6H8
  • P7H9
  • P8H10
  • P9H11
  • P10H12
  • more...
Phosphenes
  • P2H2
  • P3H3
  • P4H4
Arsanes
  • AsH3
  • As2H4
Stibanes
  • SbH3
Bismuthanes
  • BiH3
Moscovanes
  • McH3 (predicted)
  • HN3
  • NH
  • HN5
  • NH5 (?)
Hydrogen
chalcogenides
(Group 16 hydrides)
Polyoxidanes
  • H2O
  • H2O2
  • H2O3
  • H2O4
  • H2O5
  • more...
  • Polysulfanes
    • H2S
    • H2S2
    • H2S3
    • H2S4
    • H2S5
    • H2S6
    • H2S7
    • H2S8
    • H2S9
    • H2S10
    • more...
    Selanes
    • H2Se
    • H2Se2
    Tellanes
    • H2Te
    • H2Te2
    Polanes
    • PoH2
    Livermoranes
    • LvH2 (predicted)
    • HO
    • HO2
    • HO3
    • H2O+–O (?)
    • HS
    • HDO
    • D2O
    • T2O
    Hydrogen halides
    (Group 17 hydrides)
  • HF
  • HCl
  • HBr
  • HI
  • HAt
  • HTs (predicted)
  • Transition metal hydrides
    • ScH2
    • YH2
    • YH3
    • YH6
    • YH9
    • LuH2
    • LuH3
    • TiH2
    • TiH4
    • ZrH2
    • ZrH4
    • HfH2
    • HfH4
    • VH
    • VH2
    • NbH
    • NbH2
    • TaH
    • TaH2
    • CrH
    • CrH2
    • CrHx
    • FeH
    • FeH2
    • FeH5
    • CoH2
    • RhH2
    • IrH3
    • NiH
    • PdHx (x < 1)
    • PtHx (x< 1)
    • DsH2 (predicted)
    • CuH
    • RgH (predicted)
    • ZnH2
    • CdH2
    • HgH
    • Hg2H2
    • HgH2
    • CnH2 (predicted)
    Lanthanide hydrides
    • LaH2
    • LaH3
    • LaH10
    • CeH2
    • CeH3
    • PrH2
    • PrH3
    • NdH2
    • NdH3
    • SmH2
    • SmH3
    • EuH2
    • GdH2
    • GdH3
    • TbH2
    • TbH3
    • DyH2
    • DyH3
    • HoH2
    • HoH3
    • ErH2
    • ErH3
    • TmH2
    • TmH3
    • YbH2
    • LuH2
    • LuH3
    Actinide hydrides
    • AcH2
    • ThH2
    • ThH4
    • Th4H15
    • PaH3
    • UH3
    • UH4
    • NpH2
    • NpH3
    • PuH2
    • PuH3
    • AmH2
    • AmH3
    • CmH2
    • BkH2
    • BkH3
    • CfH2
    • CfH3
    Exotic matter hydrides
    Authority control databases: National Edit this at Wikidata
    • Germany
    • Israel
    • United States