Hemicontinuity

In mathematics, the notion of the continuity of functions is not immediately extensible to set-valued functions between two sets A and B. The dual concepts of upper hemicontinuity and lower hemicontinuity facilitate such an extension. A set-valued function that has both properties is said to be continuous in an analogy to the property of the same name for single-valued functions.

To explain both notions, consider a sequence a of points in a domain, and a sequence b of points in the range. We say that b corresponds to a if each point in b is contained in the image of the corresponding point in a.

  • Upper hemicontinuity requires that, for any convergent sequence a in a domain, and for any convergent sequence b that corresponds to a, the image of the limit of a contains the limit of b.
  • Lower hemicontinuity requires that, for any convergent sequence a in a domain, and for any point x in the image of the limit of a, there exists a sequence b that corresponds to a subsequence of a, that converges to x.

Examples

This set-valued function is upper hemicontinuous everywhere, but not lower hemicontinuous at x {\displaystyle x}  : for a sequence of points ( x m ) {\displaystyle \left(x_{m}\right)} that converges to x , {\displaystyle x,} we have a y {\displaystyle y} ( y f ( x ) {\displaystyle y\in f(x)} ) such that no sequence of ( y m ) {\displaystyle \left(y_{m}\right)} converges to y {\displaystyle y} where each y m {\displaystyle y_{m}} is in f ( x m ) . {\displaystyle f\left(x_{m}\right).}
This set-valued function is lower hemicontinuous everywhere, but not upper hemicontinuous at x , {\displaystyle x,} because the graph (set) is not closed.

The image on the right shows a function that is not lower hemicontinuous at x. To see this, let a be a sequence that converges to x from the left. The image of x is a vertical line that contains some point (x,y). But every sequence b that corresponds to a is contained in the bottom horizontal line, so it cannot converge to y. In contrast, the function is upper hemicontinuous everywhere. For example, considering any sequence a that converges to x from the left or from the right, and any corresponding sequence b, the limit of b is contained in the vertical line that is the image of the limit of a.

The image on the left shows a function that is not upper hemicontinuous at x. To see this, let a be a sequence that converges to x from the right. The image of a contains vertical lines, so there exists a corresponding sequence b in which all elements are bounded away from f(x). The image of the limit of a contains a single point f(x), so it does not contain the limit of b. In contrast, that function is lower hemicontinuous everywhere. For example, for any sequence a that converges to x, from the left or from the right, f(x) contains a single point, and there exists a corresponding sequence b that converges to f(x).

Formal definition: upper hemicontinuity

A set-valued function Γ : A B {\displaystyle \Gamma :A\to B} is said to be upper hemicontinuous at the point a {\displaystyle a} if, for any open V B {\displaystyle V\subset B} with Γ ( a ) V {\displaystyle \Gamma (a)\subset V} , there exists a neighbourhood U {\displaystyle U} of a {\displaystyle a} such that for all x U , {\displaystyle x\in U,} Γ ( x ) {\displaystyle \Gamma (x)} is a subset of V . {\displaystyle V.}

Sequential characterization

For a set-valued function Γ : A B {\displaystyle \Gamma :A\to B} with closed values, if Γ : A B {\displaystyle \Gamma :A\to B} is upper hemicontinuous at a A {\displaystyle a\in A} then for all sequences a = ( a m ) m = 1 {\displaystyle a_{\bullet }=\left(a_{m}\right)_{m=1}^{\infty }} in A {\displaystyle A} and all sequences ( b m ) m = 1 {\displaystyle \left(b_{m}\right)_{m=1}^{\infty }} such that b m Γ ( a m ) , {\displaystyle b_{m}\in \Gamma \left(a_{m}\right),}

if lim m a m = a {\displaystyle \lim _{m\to \infty }a_{m}=a} and lim m b m = b {\displaystyle \lim _{m\to \infty }b_{m}=b} then b Γ ( a ) . {\displaystyle b\in \Gamma (a).}

As an example, look at the image at the right, and consider sequence a in the domain that converges to x (either from the left or from the right). Then, any sequence b that satisfies the requirements converges to some point in f(x). Therefore, the

If B is compact, the converse is also true.

Closed graph theorem

The graph of a set-valued function Γ : A B {\displaystyle \Gamma :A\to B} is the set defined by G r ( Γ ) = { ( a , b ) A × B : b Γ ( a ) } . {\displaystyle Gr(\Gamma )=\{(a,b)\in A\times B:b\in \Gamma (a)\}.}

If Γ : A B {\displaystyle \Gamma :A\to B} is an upper hemicontinuous set-valued function with closed domain (that is, the set of points a A {\displaystyle a\in A} where Γ ( a ) {\displaystyle \Gamma (a)} is not the empty set is closed) and closed values (i.e. Γ ( a ) {\displaystyle \Gamma (a)} is closed for all a A {\displaystyle a\in A} ), then Gr ( Γ ) {\displaystyle \operatorname {Gr} (\Gamma )} is closed. If B {\displaystyle B} is compact, then the converse is also true.[1]

Formal definition: lower hemicontinuity

A set-valued function Γ : A B {\displaystyle \Gamma :A\to B} is said to be lower hemicontinuous at the point a {\displaystyle a} if for any open set V {\displaystyle V} intersecting Γ ( a ) {\displaystyle \Gamma (a)} there exists a neighbourhood U {\displaystyle U} of a {\displaystyle a} such that Γ ( x ) {\displaystyle \Gamma (x)} intersects V {\displaystyle V} for all x U . {\displaystyle x\in U.} (Here V {\displaystyle V} intersects S {\displaystyle S} means nonempty intersection V S {\displaystyle V\cap S\neq \varnothing } ).

Sequential characterization

Γ : A B {\displaystyle \Gamma :A\to B} is lower hemicontinuous at a {\displaystyle a} if and only if for every sequence a = ( a m ) m = 1 {\displaystyle a_{\bullet }=\left(a_{m}\right)_{m=1}^{\infty }} in A {\displaystyle A} such that a a {\displaystyle a_{\bullet }\to a} in A {\displaystyle A} and all b Γ ( a ) , {\displaystyle b\in \Gamma (a),} there exists a subsequence ( a m k ) k = 1 {\displaystyle \left(a_{m_{k}}\right)_{k=1}^{\infty }} of a {\displaystyle a_{\bullet }} and also a sequence b = ( b k ) k = 1 {\displaystyle b_{\bullet }=\left(b_{k}\right)_{k=1}^{\infty }} such that b b {\displaystyle b_{\bullet }\to b} and b k Γ ( a m k ) {\displaystyle b_{k}\in \Gamma \left(a_{m_{k}}\right)} for every k . {\displaystyle k.}

Open graph theorem

A set-valued function Γ : A B {\displaystyle \Gamma :A\to B} have open lower sections if the set Γ 1 ( b ) = { a A : b Γ ( a ) } {\displaystyle \Gamma ^{-1}(b)=\{a\in A:b\in \Gamma (a)\}} is open in A {\displaystyle A} for every b B . {\displaystyle b\in B.} If Γ {\displaystyle \Gamma } values are all open sets in B , {\displaystyle B,} then Γ {\displaystyle \Gamma } is said to have open upper sections.

If Γ {\displaystyle \Gamma } has an open graph Gr ( Γ ) , {\displaystyle \operatorname {Gr} (\Gamma ),} then Γ {\displaystyle \Gamma } has open upper and lower sections and if Γ {\displaystyle \Gamma } has open lower sections then it is lower hemicontinuous.[2]

The open graph theorem says that if Γ : A P ( R n ) {\displaystyle \Gamma :A\to P\left(\mathbb {R} ^{n}\right)} is a set-valued function with convex values and open upper sections, then Γ {\displaystyle \Gamma } has an open graph in A × R n {\displaystyle A\times \mathbb {R} ^{n}} if and only if Γ {\displaystyle \Gamma } is lower hemicontinuous.[2]

Properties

Set-theoretic, algebraic and topological operations on set-valued functions (like union, composition, sum, convex hull, closure) usually preserve the type of continuity. But this should be taken with appropriate care since, for example, there exists a pair of lower hemicontinuous set-valued functions whose intersection is not lower hemicontinuous. This can be fixed upon strengthening continuity properties: if one of those lower hemicontinuous multifunctions has open graph then their intersection is again lower hemicontinuous.

Crucial to set-valued analysis (in view of applications) are the investigation of single-valued selections and approximations to set-valued functions. Typically lower hemicontinuous set-valued functions admit single-valued selections (Michael selection theorem, Bressan–Colombo directionally continuous selection theorem, Fryszkowski decomposable map selection). Likewise, upper hemicontinuous maps admit approximations (e.g. Ancel–Granas–Górniewicz–Kryszewski theorem).

Implications for continuity

If a set-valued function is both upper hemicontinuous and lower hemicontinuous, it is said to be continuous. A continuous function is in all cases both upper and lower hemicontinuous.

Other concepts of continuity

The upper and lower hemicontinuity might be viewed as usual continuity:

Γ : A B {\displaystyle \Gamma :A\to B} is lower [resp. upper] hemicontinuous if and only if the mapping Γ : A P ( B ) {\displaystyle \Gamma :A\to P(B)} is continuous where the hyperspace P(B) has been endowed with the lower [resp. upper] Vietoris topology.

(For the notion of hyperspace compare also power set and function space).

Using lower and upper Hausdorff uniformity we can also define the so-called upper and lower semicontinuous maps in the sense of Hausdorff (also known as metrically lower / upper semicontinuous maps).

See also

  • Differential inclusion
  • Hausdorff distance – Distance between two metric-space subsets
  • Semicontinuity – Property of functions which is weaker than continuityPages displaying short descriptions of redirect targets

Notes

  1. ^ Proposition 1.4.8 of Aubin, Jean-Pierre; Frankowska, Hélène (1990). Set-Valued Analysis. Basel: Birkhäuser. ISBN 3-7643-3478-9.
  2. ^ a b Zhou, J.X. (August 1995). "On the Existence of Equilibrium for Abstract Economies". Journal of Mathematical Analysis and Applications. 193 (3): 839–858. doi:10.1006/jmaa.1995.1271.

References

  • Aliprantis, Charalambos D.; Border, Kim C. (2006). Infinite Dimensional Analysis: A Hitchhiker's Guide (Third ed.). Berlin: Springer Science & Business Media. ISBN 978-3-540-29587-7. OCLC 262692874.
  • Aubin, Jean-Pierre; Cellina, Arrigo (1984). Differential Inclusions: Set-Valued Maps and Viability Theory. Grundl. der Math. Wiss. Vol. 264. Berlin: Springer. ISBN 0-387-13105-1.
  • Aubin, Jean-Pierre; Frankowska, Hélène (1990). Set-Valued Analysis. Basel: Birkhäuser. ISBN 3-7643-3478-9.
  • Deimling, Klaus (1992). Multivalued Differential Equations. Walter de Gruyter. ISBN 3-11-013212-5.
  • Mas-Colell, Andreu; Whinston, Michael D.; Green, Jerry R. (1995). Microeconomic Analysis. New York: Oxford University Press. pp. 949–951. ISBN 0-19-507340-1.
  • Ok, Efe A. (2007). Real Analysis with Economic Applications. Princeton University Press. pp. 216–226. ISBN 978-0-691-11768-3.
  • v
  • t
  • e
Convex analysis and variational analysis
Basic concepts
Topics (list)MapsMain results (list)SetsSeriesDualityApplications and related