Hardy's inequality

Hardy's inequality is an inequality in mathematics, named after G. H. Hardy. It states that if a 1 , a 2 , a 3 , {\displaystyle a_{1},a_{2},a_{3},\dots } is a sequence of non-negative real numbers, then for every real number p > 1 one has

n = 1 ( a 1 + a 2 + + a n n ) p ( p p 1 ) p n = 1 a n p . {\displaystyle \sum _{n=1}^{\infty }\left({\frac {a_{1}+a_{2}+\cdots +a_{n}}{n}}\right)^{p}\leq \left({\frac {p}{p-1}}\right)^{p}\sum _{n=1}^{\infty }a_{n}^{p}.}

If the right-hand side is finite, equality holds if and only if a n = 0 {\displaystyle a_{n}=0} for all n.

An integral version of Hardy's inequality states the following: if f is a measurable function with non-negative values, then

0 ( 1 x 0 x f ( t ) d t ) p d x ( p p 1 ) p 0 f ( x ) p d x . {\displaystyle \int _{0}^{\infty }\left({\frac {1}{x}}\int _{0}^{x}f(t)\,dt\right)^{p}\,dx\leq \left({\frac {p}{p-1}}\right)^{p}\int _{0}^{\infty }f(x)^{p}\,dx.}

If the right-hand side is finite, equality holds if and only if f(x) = 0 almost everywhere.

Hardy's inequality was first published and proved (at least the discrete version with a worse constant) in 1920 in a note by Hardy.[1] The original formulation was in an integral form slightly different from the above.

General one-dimensional version

The general weighted one dimensional version reads as follows:[2]: §329 

  • If α + 1 p < 1 {\displaystyle \alpha +{\tfrac {1}{p}}<1} , then
0 ( y α 1 0 y x α f ( x ) d x ) p d y 1 ( 1 α 1 p ) p 0 f ( x ) p d x {\displaystyle \int _{0}^{\infty }{\biggl (}y^{\alpha -1}\int _{0}^{y}x^{-\alpha }f(x)\,dx{\biggr )}^{p}\,dy\leq {\frac {1}{{\bigl (}1-\alpha -{\frac {1}{p}}{\bigr )}^{p}}}\int _{0}^{\infty }f(x)^{p}\,dx}
  • If α + 1 p > 1 {\displaystyle \alpha +{\tfrac {1}{p}}>1} , then
0 ( y α 1 y x α f ( x ) d x ) p d y 1 ( α + 1 p 1 ) p 0 f ( x ) p d x . {\displaystyle \int _{0}^{\infty }{\biggl (}y^{\alpha -1}\int _{y}^{\infty }x^{-\alpha }f(x)\,dx{\biggr )}^{p}\,dy\leq {\frac {1}{{\bigl (}\alpha +{\frac {1}{p}}-1{\bigr )}^{p}}}\int _{0}^{\infty }f(x)^{p}\,dx.}

Multidimensional versions

Multidimensional Hardy inequality around a point

In the multidimensional case, Hardy's inequality can be extended to L p {\displaystyle L^{p}} -spaces, taking the form [3]

f | x | L p ( R n ) p n p f L p ( R n ) , 2 n , 1 p < n , {\displaystyle \left\|{\frac {f}{|x|}}\right\|_{L^{p}(\mathbb {R} ^{n})}\leq {\frac {p}{n-p}}\|\nabla f\|_{L^{p}(\mathbb {R} ^{n})},2\leq n,1\leq p<n,}

where f C 0 ( R n ) {\displaystyle f\in C_{0}^{\infty }(\mathbb {R} ^{n})} , and where the constant p n p {\displaystyle {\frac {p}{n-p}}} is known to be sharp; by density it extends then to the Sobolev space W 1 , p ( R n ) {\displaystyle W^{1,p}(\mathbb {R} ^{n})} .

Similarly, if p > n 2 {\displaystyle p>n\geq 2} , then one has for every f C 0 ( R n ) {\displaystyle f\in C_{0}^{\infty }(\mathbb {R} ^{n})}

( 1 n p ) p R n | f ( x ) f ( 0 ) | p | x | p d x R n | f | p . {\displaystyle {\Big (}1-{\frac {n}{p}}{\Big )}^{p}\int _{\mathbb {R} ^{n}}{\frac {\vert f(x)-f(0)\vert ^{p}}{|x|^{p}}}dx\leq \int _{\mathbb {R} ^{n}}\vert \nabla f\vert ^{p}.}

Multidimensional Hardy inequality near the boundary

If Ω R n {\displaystyle \Omega \subsetneq \mathbb {R} ^{n}} is an nonempty convex open set, then for every f W 1 , p ( Ω ) {\displaystyle f\in W^{1,p}(\Omega )} ,

( 1 1 p ) p Ω | f ( x ) | p dist ( x , Ω ) p d x Ω | f | p , {\displaystyle {\Big (}1-{\frac {1}{p}}{\Big )}^{p}\int _{\Omega }{\frac {\vert f(x)\vert ^{p}}{\operatorname {dist} (x,\partial \Omega )^{p}}}\,dx\leq \int _{\Omega }\vert \nabla f\vert ^{p},}

and the constant cannot be improved.[4]

Fractional Hardy inequality

If 1 p < {\displaystyle 1\leq p<\infty } and 0 < λ < {\displaystyle 0<\lambda <\infty } , λ 1 {\displaystyle \lambda \neq 1} , there exists a constant C {\displaystyle C} such that for every f : ( 0 , ) R {\displaystyle f:(0,\infty )\to \mathbb {R} } satisfying 0 | f ( x ) | p / x λ d x < {\displaystyle \int _{0}^{\infty }\vert f(x)\vert ^{p}/x^{\lambda }\,dx<\infty } , one has[5]: Lemma 2 

0 | f ( x ) | p x λ d x C 0 0 | f ( x ) f ( y ) | p | x y | 1 + λ d x d y . {\displaystyle \int _{0}^{\infty }{\frac {\vert f(x)\vert ^{p}}{x^{\lambda }}}\,dx\leq C\int _{0}^{\infty }\int _{0}^{\infty }{\frac {\vert f(x)-f(y)\vert ^{p}}{\vert x-y\vert ^{1+\lambda }}}\,dx\,dy.}

Proof of the inequality

Integral version

A change of variables gives

( 0 ( 1 x 0 x f ( t ) d t ) p   d x ) 1 / p = ( 0 ( 0 1 f ( s x ) d s ) p d x ) 1 / p , {\displaystyle \left(\int _{0}^{\infty }\left({\frac {1}{x}}\int _{0}^{x}f(t)\,dt\right)^{p}\ dx\right)^{1/p}=\left(\int _{0}^{\infty }\left(\int _{0}^{1}f(sx)\,ds\right)^{p}\,dx\right)^{1/p},}

which is less or equal than 0 1 ( 0 f ( s x ) p d x ) 1 / p d s {\displaystyle \int _{0}^{1}\left(\int _{0}^{\infty }f(sx)^{p}\,dx\right)^{1/p}\,ds} by Minkowski's integral inequality. Finally, by another change of variables, the last expression equals

0 1 ( 0 f ( x ) p d x ) 1 / p s 1 / p d s = p p 1 ( 0 f ( x ) p d x ) 1 / p . {\displaystyle \int _{0}^{1}\left(\int _{0}^{\infty }f(x)^{p}\,dx\right)^{1/p}s^{-1/p}\,ds={\frac {p}{p-1}}\left(\int _{0}^{\infty }f(x)^{p}\,dx\right)^{1/p}.}

Discrete version: from the continuous version

Assuming the right-hand side to be finite, we must have a n 0 {\displaystyle a_{n}\to 0} as n {\displaystyle n\to \infty } . Hence, for any positive integer j, there are only finitely many terms bigger than 2 j {\displaystyle 2^{-j}} . This allows us to construct a decreasing sequence b 1 b 2 {\displaystyle b_{1}\geq b_{2}\geq \dotsb } containing the same positive terms as the original sequence (but possibly no zero terms). Since a 1 + a 2 + + a n b 1 + b 2 + + b n {\displaystyle a_{1}+a_{2}+\dotsb +a_{n}\leq b_{1}+b_{2}+\dotsb +b_{n}} for every n, it suffices to show the inequality for the new sequence. This follows directly from the integral form, defining f ( x ) = b n {\displaystyle f(x)=b_{n}} if n 1 < x < n {\displaystyle n-1<x<n} and f ( x ) = 0 {\displaystyle f(x)=0} otherwise. Indeed, one has

0 f ( x ) p d x = n = 1 b n p {\displaystyle \int _{0}^{\infty }f(x)^{p}\,dx=\sum _{n=1}^{\infty }b_{n}^{p}}

and, for n 1 < x < n {\displaystyle n-1<x<n} , there holds

1 x 0 x f ( t ) d t = b 1 + + b n 1 + ( x n + 1 ) b n x b 1 + + b n n {\displaystyle {\frac {1}{x}}\int _{0}^{x}f(t)\,dt={\frac {b_{1}+\dots +b_{n-1}+(x-n+1)b_{n}}{x}}\geq {\frac {b_{1}+\dots +b_{n}}{n}}}

(the last inequality is equivalent to ( n x ) ( b 1 + + b n 1 ) ( n 1 ) ( n x ) b n {\displaystyle (n-x)(b_{1}+\dots +b_{n-1})\geq (n-1)(n-x)b_{n}} , which is true as the new sequence is decreasing) and thus

n = 1 ( b 1 + + b n n ) p 0 ( 1 x 0 x f ( t ) d t ) p d x {\displaystyle \sum _{n=1}^{\infty }\left({\frac {b_{1}+\dots +b_{n}}{n}}\right)^{p}\leq \int _{0}^{\infty }\left({\frac {1}{x}}\int _{0}^{x}f(t)\,dt\right)^{p}\,dx} .

Discrete version: Direct proof

Let p > 1 {\displaystyle p>1} and let b 1 , , b n {\displaystyle b_{1},\dots ,b_{n}} be positive real numbers. Set S k = i = 1 k b i {\displaystyle S_{k}=\sum _{i=1}^{k}b_{i}} . First we prove the inequality

n = 1 N S n p n p p p 1 n = 1 N b n S n p 1 n p 1 , {\displaystyle \sum _{n=1}^{N}{\frac {S_{n}^{p}}{n^{p}}}\leq {\frac {p}{p-1}}\sum _{n=1}^{N}{\frac {b_{n}S_{n}^{p-1}}{n^{p-1}}},}

(*)

Let T n = S n n {\displaystyle T_{n}={\frac {S_{n}}{n}}} and let Δ n {\displaystyle \Delta _{n}} be the difference between the n {\displaystyle n} -th terms in the right-hand side and left-hand side of *, that is, Δ n := T n p p p 1 b n T n p 1 {\displaystyle \Delta _{n}:=T_{n}^{p}-{\frac {p}{p-1}}b_{n}T_{n}^{p-1}} . We have:

Δ n = T n p p p 1 b n T n p 1 = T n p p p 1 ( n T n ( n 1 ) T n 1 ) T n p 1 {\displaystyle \Delta _{n}=T_{n}^{p}-{\frac {p}{p-1}}b_{n}T_{n}^{p-1}=T_{n}^{p}-{\frac {p}{p-1}}(nT_{n}-(n-1)T_{n-1})T_{n}^{p-1}}

or

Δ n = T n p ( 1 n p p 1 ) + p ( n 1 ) p 1 T n 1 T n p . {\displaystyle \Delta _{n}=T_{n}^{p}\left(1-{\frac {np}{p-1}}\right)+{\frac {p(n-1)}{p-1}}T_{n-1}T_{n}^{p}.}

According to Young's inequality we have:

T n 1 T n p 1 T n 1 p p + ( p 1 ) T n p p , {\displaystyle T_{n-1}T_{n}^{p-1}\leq {\frac {T_{n-1}^{p}}{p}}+(p-1){\frac {T_{n}^{p}}{p}},}

from which it follows that:

Δ n n 1 p 1 T n 1 p n p 1 T n p . {\displaystyle \Delta _{n}\leq {\frac {n-1}{p-1}}T_{n-1}^{p}-{\frac {n}{p-1}}T_{n}^{p}.}

By telescoping we have:

n = 1 N Δ n 0 1 p 1 T 1 p + 1 p 1 T 1 p 2 p 1 T 2 p + 2 p 1 T 2 p 3 p 1 T 3 p + + N 1 p 1 T N 1 p N p 1 T N p = N p 1 T N p < 0 , {\displaystyle {\begin{aligned}\sum _{n=1}^{N}\Delta _{n}&\leq 0-{\frac {1}{p-1}}T_{1}^{p}+{\frac {1}{p-1}}T_{1}^{p}-{\frac {2}{p-1}}T_{2}^{p}+{\frac {2}{p-1}}T_{2}^{p}-{\frac {3}{p-1}}T_{3}^{p}+\dotsb +{\frac {N-1}{p-1}}T_{N-1}^{p}-{\frac {N}{p-1}}T_{N}^{p}\\&=-{\frac {N}{p-1}}T_{N}^{p}<0,\end{aligned}}}

proving *. Applying Hölder's inequality to the right-hand side of * we have:

n = 1 N S n p n p p p 1 n = 1 N b n S n p 1 n p 1 p p 1 ( n = 1 N b n p ) 1 / p ( n = 1 N S n p n p ) ( p 1 ) / p {\displaystyle \sum _{n=1}^{N}{\frac {S_{n}^{p}}{n^{p}}}\leq {\frac {p}{p-1}}\sum _{n=1}^{N}{\frac {b_{n}S_{n}^{p-1}}{n^{p-1}}}\leq {\frac {p}{p-1}}\left(\sum _{n=1}^{N}b_{n}^{p}\right)^{1/p}\left(\sum _{n=1}^{N}{\frac {S_{n}^{p}}{n^{p}}}\right)^{(p-1)/p}}

from which we immediately obtain:

n = 1 N S n p n p ( p p 1 ) p n = 1 N b n p . {\displaystyle \sum _{n=1}^{N}{\frac {S_{n}^{p}}{n^{p}}}\leq \left({\frac {p}{p-1}}\right)^{p}\sum _{n=1}^{N}b_{n}^{p}.}

Letting N {\displaystyle N\rightarrow \infty } we obtain Hardy's inequality.

See also

  • Carleman's inequality

Notes

  1. ^ Hardy, G. H. (1920). "Note on a theorem of Hilbert". Mathematische Zeitschrift. 6 (3–4): 314–317. doi:10.1007/BF01199965. S2CID 122571449.
  2. ^ Hardy, G. H.; Littlewood, J.E.; Pólya, G. (1952). Inequalities (Second ed.). Cambridge, UK.{{cite book}}: CS1 maint: location missing publisher (link)
  3. ^ Ruzhansky, Michael; Suragan, Durvudkhan (2019). Hardy Inequalities on Homogeneous Groups: 100 Years of Hardy Inequalities. Birkhäuser Basel. ISBN 978-3-030-02894-7.
  4. ^ Marcus, Moshe; Mizel, Victor J.; Pinchover, Yehuda (1998). "On the best constant for Hardy's inequality in $\mathbb {R}^n$". Transactions of the American Mathematical Society. 350 (8): 3237–3255. doi:10.1090/S0002-9947-98-02122-9.
  5. ^ Mironescu, Petru (2018). "The role of the Hardy type inequalities in the theory of function spaces" (PDF). Revue roumaine de mathématiques pures et appliquées. 63 (4): 447–525.

References

  • Hardy, G. H.; Littlewood, J. E.; Pólya, G. (1952). Inequalities (2nd ed.). Cambridge University Press. ISBN 0-521-35880-9.
  • Kufner, Alois; Persson, Lars-Erik (2003). Weighted inequalities of Hardy type. World Scientific Publishing. ISBN 981-238-195-3.
  • Masmoudi, Nader (2011), "About the Hardy Inequality", in Dierk Schleicher; Malte Lackmann (eds.), An Invitation to Mathematics, Springer Berlin Heidelberg, ISBN 978-3-642-19533-4.
  • Ruzhansky, Michael; Suragan, Durvudkhan (2019). Hardy Inequalities on Homogeneous Groups: 100 Years of Hardy Inequalities. Birkhäuser Basel. ISBN 978-3-030-02895-4.

External links

  • "Hardy inequality", Encyclopedia of Mathematics, EMS Press, 2001 [1994]