Hafnium nitrides

The hafnium nitrides are the various salts produced from combining hafnium and nitrogen. The two most important such are hafnium(III) nitride, HfN; and hafnium(IV) nitride, Hf3N4. None can be prepared from hafnium oxide, but must instead be prepared from the elemental metal or a different hafnium nitride salt; attempted nitridation of the oxide gives an oxynitride instead.[1]

HfN is refractory and generally produced as a thin film coating,[2] although zone annealing gives the bulk material.[3] HfN adopts the rock-salt crystal structure.[2] The surplus hafnium electron delocalizes, so that HfN is a metal, conducting at room temperature and superconducting below 8.8 K (−443.83 °F). Its bright gold color is a cheaper alternative to gilding.[4]

The dark red semiconductor Hf3N4 does not form at room temperature, but requires high pressure, high temperature synthesis in a diamond anvil cell. At 18 GPa (180,000 atm) and 2,800 K (4,580 °F), it adopts the cubic crystal structure and repeats according to space group I{{{1}}}3d.[2] At lower pressures, the cubic structure is believed metastable, decaying to the orthorhombic structure of zirconium(IV) nitride.[4][5] That structure forms outright at 19 GPa and 2,000 K (3,140 °F), and another metastable tetragonal structure forms at 12 GPa and 1,500 K (2,240 °F). Computational studies suggest that it may catalyze polymerization of nitrogen at very high temperatures, through a catenary anion in HfN10.[5]

In systems with limited nitrogen, hafnium also forms Hf3N2, as well as a solid solution hafnium alloy.[6]

References

  1. ^ Bazhanov, D. I.; Knizhnik, A. A.; Safonov, A. A.; Bagatur’yants, A. A.; Stoker, M. W.; Korkin, A. A. (2005-02-15). "Structure and electronic properties of zirconium and hafnium nitrides and oxynitrides". Journal of Applied Physics. 97 (4). doi:10.1063/1.1851000. ISSN 0021-8979.
  2. ^ a b c Zerr, Andreas; Miehe, Gerhard; Riedel, Ralf (2003-03-01). "Synthesis of cubic zirconium and hafnium nitride having Th3P4 structure". Nature Materials. 2 (3): 185–189. doi:10.1038/nmat836. ISSN 1476-1122.
  3. ^ Christensen, A. Nørlund; Kress, W.; Miura, M.; Lehner, N. (1983-07-15). "Phonon anomalies in transition-metal nitrides: HfN". Physical Review B. 28 (2): 977–981. doi:10.1103/PhysRevB.28.977. ISSN 0163-1829.
  4. ^ a b Kroll, Peter (2003-03-25). "Hafnium Nitride with Thorium Phosphide Structure: Physical Properties and an Assessment of the Hf-N, Zr-N, and Ti-N Phase Diagrams at High Pressures and Temperatures". Physical Review Letters. 90 (12). doi:10.1103/PhysRevLett.90.125501. ISSN 0031-9007.
  5. ^ a b Zhang, Jin; Oganov, Artem R.; Li, Xinfeng; Niu, Haiyang (2017-01-18). "Pressure-stabilized hafnium nitrides and their properties". Physical Review B. 95 (2). doi:10.1103/PhysRevB.95.020103. ISSN 2469-9950.
  6. ^ Ushakov, Sergey V.; Navrotsky, Alexandra; Hong, Qi-Jun; van de Walle, Axel (26 Aug 2019) [6 Aug 2019]. "Carbides and nitrides of zirconium and hafnium". Materials. 2019 (12). Basel: MDPI. doi:10.3390/ma12172728.
  • v
  • t
  • e
Salts and covalent derivatives of the nitride ion
NH3
N2H4
+H
HN2−
H2N
He(N2)11
Li3N
LiN3
Be3N2
Be(N3)2
BN
-B
C2N2
β-C3N4
g-C3N4
CxNy
N2 NxOy
+O
N3F
N2F2
N2F4
NF3
+F
Ne
Na3N
NaN3
Mg3N2
Mg(N3)2
AlN Si3N4
-Si
PN
P3N5
-P
SxNy
SN
S2N2
S4N4
SN2H2
NCl3
ClN3
+Cl
Ar
K3N
KN3
Ca3N2
Ca(N3)2
ScN TiN
Ti3N4
VN CrN
Cr2N
MnxNy FexNy Co3N Ni3N Cu3N Zn3N2 GaN Ge3N4
-Ge
AsN
+As
Se4N4 Br3N
BrN3
+Br
Kr
RbN3 Sr3N2
Sr(N3)2
YN ZrN NbN β-Mo2N Tc Ru Rh PdN Ag3N Cd3N2 InN Sn SbN Te4N4? I3N
IN3
+I
Xe
CsN3 Ba3N2
Ba(N3)2
* LuN HfN
Hf3N4
TaN WN RexNy Os Ir Pt Au Hg3N2 Tl3N (PbNH) BiN Po At Rn
Fr Ra3N2 ** Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
 
* LaN CeN PrN NdN PmN SmN EuN GdN TbN DyN HoN ErN TmN YbN
** Ac ThxNy PaN UxNy NpN PuN AmN CmN BkN Cf Es Fm Md No