Gowers norm

In mathematics, in the field of additive combinatorics, a Gowers norm or uniformity norm is a class of norms on functions on a finite group or group-like object which quantify the amount of structure present, or conversely, the amount of randomness.[1] They are used in the study of arithmetic progressions in the group. They are named after Timothy Gowers, who introduced it in his work on Szemerédi's theorem.[2]

Definition

Let f {\displaystyle f} be a complex-valued function on a finite abelian group G {\displaystyle G} and let J {\displaystyle J} denote complex conjugation. The Gowers d {\displaystyle d} -norm is

f U d ( G ) 2 d = x , h 1 , , h d G ω 1 , , ω d { 0 , 1 } J ω 1 + + ω d f ( x + h 1 ω 1 + + h d ω d )   . {\displaystyle \Vert f\Vert _{U^{d}(G)}^{2^{d}}=\sum _{x,h_{1},\ldots ,h_{d}\in G}\prod _{\omega _{1},\ldots ,\omega _{d}\in \{0,1\}}J^{\omega _{1}+\cdots +\omega _{d}}f\left({x+h_{1}\omega _{1}+\cdots +h_{d}\omega _{d}}\right)\ .}

Gowers norms are also defined for complex-valued functions f on a segment [ N ] = 0 , 1 , 2 , . . . , N 1 {\displaystyle [N]={0,1,2,...,N-1}} , where N is a positive integer. In this context, the uniformity norm is given as f U d [ N ] = f ~ U d ( Z / N ~ Z ) / 1 [ N ] U d ( Z / N ~ Z ) {\displaystyle \Vert f\Vert _{U^{d}[N]}=\Vert {\tilde {f}}\Vert _{U^{d}(\mathbb {Z} /{\tilde {N}}\mathbb {Z} )}/\Vert 1_{[N]}\Vert _{U^{d}(\mathbb {Z} /{\tilde {N}}\mathbb {Z} )}} , where N ~ {\displaystyle {\tilde {N}}} is a large integer, 1 [ N ] {\displaystyle 1_{[N]}} denotes the indicator function of [N], and f ~ ( x ) {\displaystyle {\tilde {f}}(x)} is equal to f ( x ) {\displaystyle f(x)} for x [ N ] {\displaystyle x\in [N]} and 0 {\displaystyle 0} for all other x {\displaystyle x} . This definition does not depend on N ~ {\displaystyle {\tilde {N}}} , as long as N ~ > 2 d N {\displaystyle {\tilde {N}}>2^{d}N} .

Inverse conjectures

An inverse conjecture for these norms is a statement asserting that if a bounded function f has a large Gowers d-norm then f correlates with a polynomial phase of degree d − 1 or other object with polynomial behaviour (e.g. a (d − 1)-step nilsequence). The precise statement depends on the Gowers norm under consideration.

The Inverse Conjecture for vector spaces over a finite field F {\displaystyle \mathbb {F} } asserts that for any δ > 0 {\displaystyle \delta >0} there exists a constant c > 0 {\displaystyle c>0} such that for any finite-dimensional vector space V over F {\displaystyle \mathbb {F} } and any complex-valued function f {\displaystyle f} on V {\displaystyle V} , bounded by 1, such that f U d [ V ] δ {\displaystyle \Vert f\Vert _{U^{d}[V]}\geq \delta } , there exists a polynomial sequence P : V R / Z {\displaystyle P\colon V\to \mathbb {R} /\mathbb {Z} } such that

| 1 | V | x V f ( x ) e ( P ( x ) ) | c , {\displaystyle \left|{\frac {1}{|V|}}\sum _{x\in V}f(x)e\left(-P(x)\right)\right|\geq c,}

where e ( x ) := e 2 π i x {\displaystyle e(x):=e^{2\pi ix}} . This conjecture was proved to be true by Bergelson, Tao, and Ziegler.[3][4][5]

The Inverse Conjecture for Gowers U d [ N ] {\displaystyle U^{d}[N]} norm asserts that for any δ > 0 {\displaystyle \delta >0} , a finite collection of (d − 1)-step nilmanifolds M δ {\displaystyle {\mathcal {M}}_{\delta }} and constants c , C {\displaystyle c,C} can be found, so that the following is true. If N {\displaystyle N} is a positive integer and f : [ N ] C {\displaystyle f\colon [N]\to \mathbb {C} } is bounded in absolute value by 1 and f U d [ N ] δ {\displaystyle \Vert f\Vert _{U^{d}[N]}\geq \delta } , then there exists a nilmanifold G / Γ M δ {\displaystyle G/\Gamma \in {\mathcal {M}}_{\delta }} and a nilsequence F ( g n x ) {\displaystyle F(g^{n}x)} where g G ,   x G / Γ {\displaystyle g\in G,\ x\in G/\Gamma } and F : G / Γ C {\displaystyle F\colon G/\Gamma \to \mathbb {C} } bounded by 1 in absolute value and with Lipschitz constant bounded by C {\displaystyle C} such that:

| 1 N n = 0 N 1 f ( n ) F ( g n x ¯ ) | c . {\displaystyle \left|{\frac {1}{N}}\sum _{n=0}^{N-1}f(n){\overline {F(g^{n}x}})\right|\geq c.}

This conjecture was proved to be true by Green, Tao, and Ziegler.[6][7] It should be stressed that the appearance of nilsequences in the above statement is necessary. The statement is no longer true if we only consider polynomial phases.

References

  1. ^ Hartnett, Kevin. "Mathematicians Catch a Pattern by Figuring Out How to Avoid It". Quanta Magazine. Retrieved 2019-11-26.
  2. ^ Gowers, Timothy (2001). "A new proof of Szemerédi's theorem". Geometric & Functional Analysis. 11 (3): 465–588. doi:10.1007/s00039-001-0332-9. MR 1844079. S2CID 124324198.
  3. ^ Bergelson, Vitaly; Tao, Terence; Ziegler, Tamar (2010). "An inverse theorem for the uniformity seminorms associated with the action of F p {\displaystyle \mathbb {F} _{p}^{\infty }} ". Geometric & Functional Analysis. 19 (6): 1539–1596. arXiv:0901.2602. doi:10.1007/s00039-010-0051-1. MR 2594614. S2CID 10875469.
  4. ^ Tao, Terence; Ziegler, Tamar (2010). "The inverse conjecture for the Gowers norm over finite fields via the correspondence principle". Analysis & PDE. 3 (1): 1–20. arXiv:0810.5527. doi:10.2140/apde.2010.3.1. MR 2663409. S2CID 16850505.
  5. ^ Tao, Terence; Ziegler, Tamar (2011). "The Inverse Conjecture for the Gowers Norm over Finite Fields in Low Characteristic". Annals of Combinatorics. 16: 121–188. arXiv:1101.1469. doi:10.1007/s00026-011-0124-3. MR 2948765. S2CID 253591592.
  6. ^ Green, Ben; Tao, Terence; Ziegler, Tamar (2011). "An inverse theorem for the Gowers U s + 1 [ N ] {\displaystyle U^{s+1}[N]} -norm". Electron. Res. Announc. Math. Sci. 18: 69–90. arXiv:1006.0205. doi:10.3934/era.2011.18.69. MR 2817840.
  7. ^ Green, Ben; Tao, Terence; Ziegler, Tamar (2012). "An inverse theorem for the Gowers U s + 1 [ N ] {\displaystyle U^{s+1}[N]} -norm". Annals of Mathematics. 176 (2): 1231–1372. arXiv:1009.3998. doi:10.4007/annals.2012.176.2.11. MR 2950773. S2CID 119588323.