Generalized forces

Concept in Lagrangian mechanics

In analytical mechanics (particularly Lagrangian mechanics), generalized forces are conjugate to generalized coordinates. They are obtained from the applied forces Fi, i = 1, …, n, acting on a system that has its configuration defined in terms of generalized coordinates. In the formulation of virtual work, each generalized force is the coefficient of the variation of a generalized coordinate.

Virtual work

Generalized forces can be obtained from the computation of the virtual work, δW, of the applied forces.[1]: 265 

The virtual work of the forces, Fi, acting on the particles Pi, i = 1, ..., n, is given by

δ W = i = 1 n F i δ r i {\displaystyle \delta W=\sum _{i=1}^{n}\mathbf {F} _{i}\cdot \delta \mathbf {r} _{i}}

where δri is the virtual displacement of the particle Pi.

Generalized coordinates

Let the position vectors of each of the particles, ri, be a function of the generalized coordinates, qj, j = 1, ..., m. Then the virtual displacements δri are given by

δ r i = j = 1 m r i q j δ q j , i = 1 , , n , {\displaystyle \delta \mathbf {r} _{i}=\sum _{j=1}^{m}{\frac {\partial \mathbf {r} _{i}}{\partial q_{j}}}\delta q_{j},\quad i=1,\ldots ,n,}

where δqj is the virtual displacement of the generalized coordinate qj.

The virtual work for the system of particles becomes

δ W = F 1 j = 1 m r 1 q j δ q j + + F n j = 1 m r n q j δ q j . {\displaystyle \delta W=\mathbf {F} _{1}\cdot \sum _{j=1}^{m}{\frac {\partial \mathbf {r} _{1}}{\partial q_{j}}}\delta q_{j}+\ldots +\mathbf {F} _{n}\cdot \sum _{j=1}^{m}{\frac {\partial \mathbf {r} _{n}}{\partial q_{j}}}\delta q_{j}.}

Collect the coefficients of δqj so that

δ W = i = 1 n F i r i q 1 δ q 1 + + i = 1 n F i r i q m δ q m . {\displaystyle \delta W=\sum _{i=1}^{n}\mathbf {F} _{i}\cdot {\frac {\partial \mathbf {r} _{i}}{\partial q_{1}}}\delta q_{1}+\ldots +\sum _{i=1}^{n}\mathbf {F} _{i}\cdot {\frac {\partial \mathbf {r} _{i}}{\partial q_{m}}}\delta q_{m}.}

Generalized forces

The virtual work of a system of particles can be written in the form

δ W = Q 1 δ q 1 + + Q m δ q m , {\displaystyle \delta W=Q_{1}\delta q_{1}+\ldots +Q_{m}\delta q_{m},}

where

Q j = i = 1 n F i r i q j , j = 1 , , m , {\displaystyle Q_{j}=\sum _{i=1}^{n}\mathbf {F} _{i}\cdot {\frac {\partial \mathbf {r} _{i}}{\partial q_{j}}},\quad j=1,\ldots ,m,}

are called the generalized forces associated with the generalized coordinates qj, j = 1, ..., m.

Velocity formulation

In the application of the principle of virtual work it is often convenient to obtain virtual displacements from the velocities of the system. For the n particle system, let the velocity of each particle Pi be Vi, then the virtual displacement δri can also be written in the form[2]

δ r i = j = 1 m V i q ˙ j δ q j , i = 1 , , n . {\displaystyle \delta \mathbf {r} _{i}=\sum _{j=1}^{m}{\frac {\partial \mathbf {V} _{i}}{\partial {\dot {q}}_{j}}}\delta q_{j},\quad i=1,\ldots ,n.}

This means that the generalized force, Qj, can also be determined as

Q j = i = 1 n F i V i q ˙ j , j = 1 , , m . {\displaystyle Q_{j}=\sum _{i=1}^{n}\mathbf {F} _{i}\cdot {\frac {\partial \mathbf {V} _{i}}{\partial {\dot {q}}_{j}}},\quad j=1,\ldots ,m.}

D'Alembert's principle

D'Alembert formulated the dynamics of a particle as the equilibrium of the applied forces with an inertia force (apparent force), called D'Alembert's principle. The inertia force of a particle, Pi, of mass mi is

F i = m i A i , i = 1 , , n , {\displaystyle \mathbf {F} _{i}^{*}=-m_{i}\mathbf {A} _{i},\quad i=1,\ldots ,n,}

where Ai is the acceleration of the particle.

If the configuration of the particle system depends on the generalized coordinates qj, j = 1, ..., m, then the generalized inertia force is given by

Q j = i = 1 n F i V i q ˙ j , j = 1 , , m . {\displaystyle Q_{j}^{*}=\sum _{i=1}^{n}\mathbf {F} _{i}^{*}\cdot {\frac {\partial \mathbf {V} _{i}}{\partial {\dot {q}}_{j}}},\quad j=1,\ldots ,m.}

D'Alembert's form of the principle of virtual work yields

δ W = ( Q 1 + Q 1 ) δ q 1 + + ( Q m + Q m ) δ q m . {\displaystyle \delta W=(Q_{1}+Q_{1}^{*})\delta q_{1}+\ldots +(Q_{m}+Q_{m}^{*})\delta q_{m}.}

References

  1. ^ Torby, Bruce (1984). "Energy Methods". Advanced Dynamics for Engineers. HRW Series in Mechanical Engineering. United States of America: CBS College Publishing. ISBN 0-03-063366-4.
  2. ^ T. R. Kane and D. A. Levinson, Dynamics, Theory and Applications, McGraw-Hill, NY, 2005.

See also

  • Lagrangian mechanics
  • Generalized coordinates
  • Degrees of freedom (physics and chemistry)
  • Virtual work