Euler integral

In mathematics, there are two types of Euler integral:[1]

  1. The Euler integral of the first kind is the beta function
    B ( z 1 , z 2 ) = 0 1 t z 1 1 ( 1 t ) z 2 1 d t = Γ ( z 1 ) Γ ( z 2 ) Γ ( z 1 + z 2 ) {\displaystyle \mathrm {\mathrm {B} } (z_{1},z_{2})=\int _{0}^{1}t^{z_{1}-1}(1-t)^{z_{2}-1}\,dt={\frac {\Gamma (z_{1})\Gamma (z_{2})}{\Gamma (z_{1}+z_{2})}}}
  2. The Euler integral of the second kind is the gamma function[2]
    Γ ( z ) = 0 t z 1 e t d t {\displaystyle \Gamma (z)=\int _{0}^{\infty }t^{z-1}\,\mathrm {e} ^{-t}\,dt}

For positive integers m and n, the two integrals can be expressed in terms of factorials and binomial coefficients:

B ( n , m ) = ( n 1 ) ! ( m 1 ) ! ( n + m 1 ) ! = n + m n m ( n + m n ) = ( 1 n + 1 m ) 1 ( n + m n ) {\displaystyle \mathrm {B} (n,m)={\frac {(n-1)!(m-1)!}{(n+m-1)!}}={\frac {n+m}{nm{\binom {n+m}{n}}}}=\left({\frac {1}{n}}+{\frac {1}{m}}\right){\frac {1}{\binom {n+m}{n}}}}
Γ ( n ) = ( n 1 ) ! {\displaystyle \Gamma (n)=(n-1)!}

See also

References

  1. ^ Jeffrey, Alan; Dai, Hui-Hui (2008). Handbook of mathematical formulas and integrals (4th ed.). Amsterdam: Elsevier Academic Press. p. 234–235. ISBN 978-0-12-374288-9. OCLC 180880679.
  2. ^ Jahnke, Hans Niels (2003). A history of analysis. History of mathematics. Providence (R.I.): American mathematical society. p. 116-117. ISBN 978-0-8218-2623-2.

External links and references

  • Wolfram MathWorld on the Euler Integral
  • NIST Digital Library of Mathematical Functions dlmf.nist.gov/5.2.1 relation 5.2.1 and dlmf.nist.gov/5.12 relation 5.12.1


Disambiguation icon
Index of articles associated with the same name
This article includes a list of related items that share the same name (or similar names).
If an internal link incorrectly led you here, you may wish to change the link to point directly to the intended article.