Euclidean topology

Topological structure of Euclidean space

In mathematics, and especially general topology, the Euclidean topology is the natural topology induced on n {\displaystyle n} -dimensional Euclidean space R n {\displaystyle \mathbb {R} ^{n}} by the Euclidean metric.

Definition

The Euclidean norm on R n {\displaystyle \mathbb {R} ^{n}} is the non-negative function : R n R {\displaystyle \|\cdot \|:\mathbb {R} ^{n}\to \mathbb {R} } defined by

( p 1 , , p n )   :=   p 1 2 + + p n 2 . {\displaystyle \left\|\left(p_{1},\ldots ,p_{n}\right)\right\|~:=~{\sqrt {p_{1}^{2}+\cdots +p_{n}^{2}}}.}

Like all norms, it induces a canonical metric defined by d ( p , q ) = p q . {\displaystyle d(p,q)=\|p-q\|.} The metric d : R n × R n R {\displaystyle d:\mathbb {R} ^{n}\times \mathbb {R} ^{n}\to \mathbb {R} } induced by the Euclidean norm is called the Euclidean metric or the Euclidean distance and the distance between points p = ( p 1 , , p n ) {\displaystyle p=\left(p_{1},\ldots ,p_{n}\right)} and q = ( q 1 , , q n ) {\displaystyle q=\left(q_{1},\ldots ,q_{n}\right)} is

d ( p , q )   =   p q   =   ( p 1 q 1 ) 2 + ( p 2 q 2 ) 2 + + ( p i q i ) 2 + + ( p n q n ) 2 . {\displaystyle d(p,q)~=~\|p-q\|~=~{\sqrt {\left(p_{1}-q_{1}\right)^{2}+\left(p_{2}-q_{2}\right)^{2}+\cdots +\left(p_{i}-q_{i}\right)^{2}+\cdots +\left(p_{n}-q_{n}\right)^{2}}}.}

In any metric space, the open balls form a base for a topology on that space.[1] The Euclidean topology on R n {\displaystyle \mathbb {R} ^{n}} is the topology generated by these balls. In other words, the open sets of the Euclidean topology on R n {\displaystyle \mathbb {R} ^{n}} are given by (arbitrary) unions of the open balls B r ( p ) {\displaystyle B_{r}(p)} defined as B r ( p ) := { x R n : d ( p , x ) < r } , {\displaystyle B_{r}(p):=\left\{x\in \mathbb {R} ^{n}:d(p,x)<r\right\},} for all real r > 0 {\displaystyle r>0} and all p R n , {\displaystyle p\in \mathbb {R} ^{n},} where d {\displaystyle d} is the Euclidean metric.

Properties

When endowed with this topology, the real line R {\displaystyle \mathbb {R} } is a T5 space. Given two subsets say A {\displaystyle A} and B {\displaystyle B} of R {\displaystyle \mathbb {R} } with A ¯ B = A B ¯ = , {\displaystyle {\overline {A}}\cap B=A\cap {\overline {B}}=\varnothing ,} where A ¯ {\displaystyle {\overline {A}}} denotes the closure of A , {\displaystyle A,} there exist open sets S A {\displaystyle S_{A}} and S B {\displaystyle S_{B}} with A S A {\displaystyle A\subseteq S_{A}} and B S B {\displaystyle B\subseteq S_{B}} such that S A S B = . {\displaystyle S_{A}\cap S_{B}=\varnothing .} [2]

See also

  • Hilbert space – Type of topological vector space
  • List of Banach spaces
  • List of topologies – List of concrete topologies and topological spaces

References

  1. ^ Metric space#Open and closed sets.2C topology and convergence
  2. ^ Steen, L. A.; Seebach, J. A. (1995), Counterexamples in Topology, Dover, ISBN 0-486-68735-X