Dirichlet beta function

The Dirichlet beta function

In mathematics, the Dirichlet beta function (also known as the Catalan beta function) is a special function, closely related to the Riemann zeta function. It is a particular Dirichlet L-function, the L-function for the alternating character of period four.

Definition

The Dirichlet beta function is defined as

β ( s ) = n = 0 ( 1 ) n ( 2 n + 1 ) s , {\displaystyle \beta (s)=\sum _{n=0}^{\infty }{\frac {(-1)^{n}}{(2n+1)^{s}}},}

or, equivalently,

β ( s ) = 1 Γ ( s ) 0 x s 1 e x 1 + e 2 x d x . {\displaystyle \beta (s)={\frac {1}{\Gamma (s)}}\int _{0}^{\infty }{\frac {x^{s-1}e^{-x}}{1+e^{-2x}}}\,dx.}

In each case, it is assumed that Re(s) > 0.

Alternatively, the following definition, in terms of the Hurwitz zeta function, is valid in the whole complex s-plane:[1]

β ( s ) = 4 s ( ζ ( s , 1 4 ) ζ ( s , 3 4 ) ) . {\displaystyle \beta (s)=4^{-s}\left(\zeta \left(s,{1 \over 4}\right)-\zeta \left(s,{3 \over 4}\right)\right).}

Another equivalent definition, in terms of the Lerch transcendent, is:

β ( s ) = 2 s Φ ( 1 , s , 1 2 ) , {\displaystyle \beta (s)=2^{-s}\Phi \left(-1,s,{{1} \over {2}}\right),}

which is once again valid for all complex values of s.

The Dirichlet beta function can also be written in terms of the polylogarithm function:

β ( s ) = i 2 ( Li s ( i ) Li s ( i ) ) . {\displaystyle \beta (s)={\frac {i}{2}}\left({\text{Li}}_{s}(-i)-{\text{Li}}_{s}(i)\right).}

Also the series representation of Dirichlet beta function can be formed in terms of the polygamma function

β ( s ) = 1 2 s n = 0 ( 1 ) n ( n + 1 2 ) s = 1 ( 4 ) s ( s 1 ) ! [ ψ ( s 1 ) ( 1 4 ) ψ ( s 1 ) ( 3 4 ) ] {\displaystyle \beta (s)={\frac {1}{2^{s}}}\sum _{n=0}^{\infty }{\frac {(-1)^{n}}{\left(n+{\frac {1}{2}}\right)^{s}}}={\frac {1}{(-4)^{s}(s-1)!}}\left[\psi ^{(s-1)}\left({\frac {1}{4}}\right)-\psi ^{(s-1)}\left({\frac {3}{4}}\right)\right]}

but this formula is only valid at positive integer values of s {\displaystyle s} .

Euler product formula

It is also the simplest example of a series non-directly related to ζ ( s ) {\displaystyle \zeta (s)} which can also be factorized as an Euler product, thus leading to the idea of Dirichlet character defining the exact set of Dirichlet series having a factorization over the prime numbers.

At least for Re(s) ≥ 1:

β ( s ) = p 1   m o d   4 1 1 p s p 3   m o d   4 1 1 + p s {\displaystyle \beta (s)=\prod _{p\equiv 1\ \mathrm {mod} \ 4}{\frac {1}{1-p^{-s}}}\prod _{p\equiv 3\ \mathrm {mod} \ 4}{\frac {1}{1+p^{-s}}}}

where p≡1 mod 4 are the primes of the form 4n+1 (5,13,17,...) and p≡3 mod 4 are the primes of the form 4n+3 (3,7,11,...). This can be written compactly as

β ( s ) = p > 2 p  prime 1 1 ( 1 ) p 1 2 p s . {\displaystyle \beta (s)=\prod _{p>2 \atop p{\text{ prime}}}{\frac {1}{1-\,\scriptstyle (-1)^{\frac {p-1}{2}}\textstyle p^{-s}}}.}

Functional equation

The functional equation extends the beta function to the left side of the complex plane Re(s) ≤ 0. It is given by

β ( 1 s ) = ( π 2 ) s sin ( π 2 s ) Γ ( s ) β ( s ) {\displaystyle \beta (1-s)=\left({\frac {\pi }{2}}\right)^{-s}\sin \left({\frac {\pi }{2}}s\right)\Gamma (s)\beta (s)}

where Γ(s) is the gamma function. It was conjectured by Euler in 1749 and proved by Malmsten in 1842 (see Blagouchine, 2014).

Special values

Some special values include:

β ( 0 ) = 1 2 , {\displaystyle \beta (0)={\frac {1}{2}},}
β ( 1 ) = arctan ( 1 ) = π 4 , {\displaystyle \beta (1)\;=\;\arctan(1)\;=\;{\frac {\pi }{4}},}
β ( 2 ) = G , {\displaystyle \beta (2)\;=\;G,}

where G represents Catalan's constant, and

β ( 3 ) = π 3 32 , {\displaystyle \beta (3)\;=\;{\frac {\pi ^{3}}{32}},}
β ( 4 ) = 1 768 ( ψ 3 ( 1 4 ) 8 π 4 ) , {\displaystyle \beta (4)\;=\;{\frac {1}{768}}\left(\psi _{3}\left({\frac {1}{4}}\right)-8\pi ^{4}\right),}
β ( 5 ) = 5 π 5 1536 , {\displaystyle \beta (5)\;=\;{\frac {5\pi ^{5}}{1536}},}
β ( 7 ) = 61 π 7 184320 , {\displaystyle \beta (7)\;=\;{\frac {61\pi ^{7}}{184320}},}

where ψ 3 ( 1 / 4 ) {\displaystyle \psi _{3}(1/4)} in the above is an example of the polygamma function.

Hence, the function vanishes for all odd negative integral values of the argument.

For every positive integer k:

β ( 2 k ) = 1 2 ( 2 k 1 ) ! m = 0 ( ( l = 0 k 1 ( 2 k 1 2 l ) ( 1 ) l A 2 k 2 l 1 2 l + 2 m + 1 ) ( 1 ) k 1 2 m + 2 k ) A 2 m ( 2 m ) ! ( π 2 ) 2 m + 2 k , {\displaystyle \beta (2k)={\frac {1}{2(2k-1)!}}\sum _{m=0}^{\infty }\left(\left(\sum _{l=0}^{k-1}{\binom {2k-1}{2l}}{\frac {(-1)^{l}A_{2k-2l-1}}{2l+2m+1}}\right)-{\frac {(-1)^{k-1}}{2m+2k}}\right){\frac {A_{2m}}{(2m)!}}{\left({\frac {\pi }{2}}\right)}^{2m+2k},} [citation needed]

where A k {\displaystyle A_{k}} is the Euler zigzag number.

Also it was derived by Malmsten in 1842 (see Blagouchine, 2014) that

β ( 1 ) = n = 1 ( 1 ) n + 1 ln ( 2 n + 1 ) 2 n + 1 = π 4 ( γ ln π ) + π ln Γ ( 3 4 ) {\displaystyle \beta '(1)=\sum _{n=1}^{\infty }(-1)^{n+1}{\frac {\ln(2n+1)}{2n+1}}\,=\,{\frac {\pi }{4}}{\big (}\gamma -\ln \pi )+\pi \ln \Gamma \left({\frac {3}{4}}\right)}
s approximate value β(s) OEIS
1/5 0.5737108471859466493572665 A261624
1/4 0.5907230564424947318659591 A261623
1/3 0.6178550888488520660725389 A261622
1/2 0.6676914571896091766586909 A195103
1 0.7853981633974483096156608 A003881
2 0.9159655941772190150546035 A006752
3 0.9689461462593693804836348 A153071
4 0.9889445517411053361084226 A175572
5 0.9961578280770880640063194 A175571
6 0.9986852222184381354416008 A175570
7 0.9995545078905399094963465
8 0.9998499902468296563380671
9 0.9999496841872200898213589
10 0.9999831640261968774055407

There are zeros at -1; -3; -5; -7 etc.

See also

References

  1. ^ Dirichlet Beta – Hurwitz zeta relation, Engineering Mathematics
  • Blagouchine, I. V. (2014). "Rediscovery of Malmsten's integrals, their evaluation by contour integration methods and some related results". Ramanujan J. 35 (1): 21–110. doi:10.1007/s11139-013-9528-5.
  • Glasser, M. L. (1972). "The evaluation of lattice sums. I. Analytic procedures". J. Math. Phys. 14 (3): 409. Bibcode:1973JMP....14..409G. doi:10.1063/1.1666331.
  • J. Spanier and K. B. Oldham, An Atlas of Functions, (1987) Hemisphere, New York.
  • Weisstein, Eric W. "Dirichlet Beta Function". MathWorld.