Dilogarithm

Special case of the polylogarithm
The dilogarithm along the real axis

In mathematics, the dilogarithm (or Spence's function), denoted as Li2(z), is a particular case of the polylogarithm. Two related special functions are referred to as Spence's function, the dilogarithm itself:

Li 2 ( z ) = 0 z ln ( 1 u ) u d u z C {\displaystyle \operatorname {Li} _{2}(z)=-\int _{0}^{z}{\ln(1-u) \over u}\,du{\text{, }}z\in \mathbb {C} }

and its reflection. For |z| < 1, an infinite series also applies (the integral definition constitutes its analytical extension to the complex plane):

Li 2 ( z ) = k = 1 z k k 2 . {\displaystyle \operatorname {Li} _{2}(z)=\sum _{k=1}^{\infty }{z^{k} \over k^{2}}.}

Alternatively, the dilogarithm function is sometimes defined as

1 v ln t 1 t d t = Li 2 ( 1 v ) . {\displaystyle \int _{1}^{v}{\frac {\ln t}{1-t}}dt=\operatorname {Li} _{2}(1-v).}

In hyperbolic geometry the dilogarithm can be used to compute the volume of an ideal simplex. Specifically, a simplex whose vertices have cross ratio z has hyperbolic volume

D ( z ) = Im Li 2 ( z ) + arg ( 1 z ) log | z | . {\displaystyle D(z)=\operatorname {Im} \operatorname {Li} _{2}(z)+\arg(1-z)\log |z|.}

The function D(z) is sometimes called the Bloch-Wigner function.[1] Lobachevsky's function and Clausen's function are closely related functions.

William Spence, after whom the function was named by early writers in the field, was a Scottish mathematician working in the early nineteenth century.[2] He was at school with John Galt,[3] who later wrote a biographical essay on Spence.

Analytic structure

Using the former definition above, the dilogarithm function is analytic everywhere on the complex plane except at z = 1 {\displaystyle z=1} , where it has a logarithmic branch point. The standard choice of branch cut is along the positive real axis ( 1 , ) {\displaystyle (1,\infty )} . However, the function is continuous at the branch point and takes on the value Li 2 ( 1 ) = π 2 / 6 {\displaystyle \operatorname {Li} _{2}(1)=\pi ^{2}/6} .

Identities

Li 2 ( z ) + Li 2 ( z ) = 1 2 Li 2 ( z 2 ) . {\displaystyle \operatorname {Li} _{2}(z)+\operatorname {Li} _{2}(-z)={\frac {1}{2}}\operatorname {Li} _{2}(z^{2}).} [4]
Li 2 ( 1 z ) + Li 2 ( 1 1 z ) = ( ln z ) 2 2 . {\displaystyle \operatorname {Li} _{2}(1-z)+\operatorname {Li} _{2}\left(1-{\frac {1}{z}}\right)=-{\frac {(\ln z)^{2}}{2}}.} [5]
Li 2 ( z ) + Li 2 ( 1 z ) = π 2 6 ln z ln ( 1 z ) . {\displaystyle \operatorname {Li} _{2}(z)+\operatorname {Li} _{2}(1-z)={\frac {{\pi }^{2}}{6}}-\ln z\cdot \ln(1-z).} [4]
Li 2 ( z ) Li 2 ( 1 z ) + 1 2 Li 2 ( 1 z 2 ) = π 2 12 ln z ln ( z + 1 ) . {\displaystyle \operatorname {Li} _{2}(-z)-\operatorname {Li} _{2}(1-z)+{\frac {1}{2}}\operatorname {Li} _{2}(1-z^{2})=-{\frac {{\pi }^{2}}{12}}-\ln z\cdot \ln(z+1).} [5]
Li 2 ( z ) + Li 2 ( 1 z ) = π 2 6 ( ln ( z ) ) 2 2 . {\displaystyle \operatorname {Li} _{2}(z)+\operatorname {Li} _{2}\left({\frac {1}{z}}\right)=-{\frac {\pi ^{2}}{6}}-{\frac {(\ln(-z))^{2}}{2}}.} [4]

Particular value identities

Li 2 ( 1 3 ) 1 6 Li 2 ( 1 9 ) = π 2 18 ( ln 3 ) 2 6 . {\displaystyle \operatorname {Li} _{2}\left({\frac {1}{3}}\right)-{\frac {1}{6}}\operatorname {Li} _{2}\left({\frac {1}{9}}\right)={\frac {{\pi }^{2}}{18}}-{\frac {(\ln 3)^{2}}{6}}.} [5]
Li 2 ( 1 3 ) 1 3 Li 2 ( 1 9 ) = π 2 18 + ( ln 3 ) 2 6 . {\displaystyle \operatorname {Li} _{2}\left(-{\frac {1}{3}}\right)-{\frac {1}{3}}\operatorname {Li} _{2}\left({\frac {1}{9}}\right)=-{\frac {{\pi }^{2}}{18}}+{\frac {(\ln 3)^{2}}{6}}.} [5]
Li 2 ( 1 2 ) + 1 6 Li 2 ( 1 9 ) = π 2 18 + ln 2 ln 3 ( ln 2 ) 2 2 ( ln 3 ) 2 3 . {\displaystyle \operatorname {Li} _{2}\left(-{\frac {1}{2}}\right)+{\frac {1}{6}}\operatorname {Li} _{2}\left({\frac {1}{9}}\right)=-{\frac {{\pi }^{2}}{18}}+\ln 2\cdot \ln 3-{\frac {(\ln 2)^{2}}{2}}-{\frac {(\ln 3)^{2}}{3}}.} [5]
Li 2 ( 1 4 ) + 1 3 Li 2 ( 1 9 ) = π 2 18 + 2 ln 2 ln 3 2 ( ln 2 ) 2 2 3 ( ln 3 ) 2 . {\displaystyle \operatorname {Li} _{2}\left({\frac {1}{4}}\right)+{\frac {1}{3}}\operatorname {Li} _{2}\left({\frac {1}{9}}\right)={\frac {{\pi }^{2}}{18}}+2\ln 2\cdot \ln 3-2(\ln 2)^{2}-{\frac {2}{3}}(\ln 3)^{2}.} [5]
Li 2 ( 1 8 ) + Li 2 ( 1 9 ) = 1 2 ( ln 9 8 ) 2 . {\displaystyle \operatorname {Li} _{2}\left(-{\frac {1}{8}}\right)+\operatorname {Li} _{2}\left({\frac {1}{9}}\right)=-{\frac {1}{2}}\left(\ln {\frac {9}{8}}\right)^{2}.} [5]
36 Li 2 ( 1 2 ) 36 Li 2 ( 1 4 ) 12 Li 2 ( 1 8 ) + 6 Li 2 ( 1 64 ) = π 2 . {\displaystyle 36\operatorname {Li} _{2}\left({\frac {1}{2}}\right)-36\operatorname {Li} _{2}\left({\frac {1}{4}}\right)-12\operatorname {Li} _{2}\left({\frac {1}{8}}\right)+6\operatorname {Li} _{2}\left({\frac {1}{64}}\right)={\pi }^{2}.}

Special values

Li 2 ( 1 ) = π 2 12 . {\displaystyle \operatorname {Li} _{2}(-1)=-{\frac {{\pi }^{2}}{12}}.}
Li 2 ( 0 ) = 0. {\displaystyle \operatorname {Li} _{2}(0)=0.}
Li 2 ( 1 2 ) = π 2 12 ( ln 2 ) 2 2 . {\displaystyle \operatorname {Li} _{2}\left({\frac {1}{2}}\right)={\frac {{\pi }^{2}}{12}}-{\frac {(\ln 2)^{2}}{2}}.}
Li 2 ( 1 ) = ζ ( 2 ) = π 2 6 , {\displaystyle \operatorname {Li} _{2}(1)=\zeta (2)={\frac {{\pi }^{2}}{6}},} where ζ ( s ) {\displaystyle \zeta (s)} is the Riemann zeta function.
Li 2 ( 2 ) = π 2 4 i π ln 2. {\displaystyle \operatorname {Li} _{2}(2)={\frac {{\pi }^{2}}{4}}-i\pi \ln 2.}
Li 2 ( 5 1 2 ) = π 2 15 + 1 2 ( ln 5 + 1 2 ) 2 = π 2 15 + 1 2 arcsch 2 2. {\displaystyle {\begin{aligned}\operatorname {Li} _{2}\left(-{\frac {{\sqrt {5}}-1}{2}}\right)&=-{\frac {{\pi }^{2}}{15}}+{\frac {1}{2}}\left(\ln {\frac {{\sqrt {5}}+1}{2}}\right)^{2}\\&=-{\frac {{\pi }^{2}}{15}}+{\frac {1}{2}}\operatorname {arcsch} ^{2}2.\end{aligned}}}
Li 2 ( 5 + 1 2 ) = π 2 10 ln 2 5 + 1 2 = π 2 10 arcsch 2 2. {\displaystyle {\begin{aligned}\operatorname {Li} _{2}\left(-{\frac {{\sqrt {5}}+1}{2}}\right)&=-{\frac {{\pi }^{2}}{10}}-\ln ^{2}{\frac {{\sqrt {5}}+1}{2}}\\&=-{\frac {{\pi }^{2}}{10}}-\operatorname {arcsch} ^{2}2.\end{aligned}}}
Li 2 ( 3 5 2 ) = π 2 15 ln 2 5 + 1 2 = π 2 15 arcsch 2 2. {\displaystyle {\begin{aligned}\operatorname {Li} _{2}\left({\frac {3-{\sqrt {5}}}{2}}\right)&={\frac {{\pi }^{2}}{15}}-\ln ^{2}{\frac {{\sqrt {5}}+1}{2}}\\&={\frac {{\pi }^{2}}{15}}-\operatorname {arcsch} ^{2}2.\end{aligned}}}
Li 2 ( 5 1 2 ) = π 2 10 ln 2 5 + 1 2 = π 2 10 arcsch 2 2. {\displaystyle {\begin{aligned}\operatorname {Li} _{2}\left({\frac {{\sqrt {5}}-1}{2}}\right)&={\frac {{\pi }^{2}}{10}}-\ln ^{2}{\frac {{\sqrt {5}}+1}{2}}\\&={\frac {{\pi }^{2}}{10}}-\operatorname {arcsch} ^{2}2.\end{aligned}}}

In particle physics

Spence's Function is commonly encountered in particle physics while calculating radiative corrections. In this context, the function is often defined with an absolute value inside the logarithm:

Φ ( x ) = 0 x ln | 1 u | u d u = { Li 2 ( x ) , x 1 ; π 2 3 1 2 ( ln x ) 2 Li 2 ( 1 x ) , x > 1. {\displaystyle \operatorname {\Phi } (x)=-\int _{0}^{x}{\frac {\ln |1-u|}{u}}\,du={\begin{cases}\operatorname {Li} _{2}(x),&x\leq 1;\\{\frac {\pi ^{2}}{3}}-{\frac {1}{2}}(\ln x)^{2}-\operatorname {Li} _{2}({\frac {1}{x}}),&x>1.\end{cases}}}

See also

  • Markstein number

Notes

  1. ^ Zagier p. 10
  2. ^ "William Spence - Biography".
  3. ^ "Biography – GALT, JOHN – Volume VII (1836-1850) – Dictionary of Canadian Biography".
  4. ^ a b c Zagier
  5. ^ a b c d e f g Weisstein, Eric W. "Dilogarithm". MathWorld.

References

  • Lewin, L. (1958). Dilogarithms and associated functions. Foreword by J. C. P. Miller. London: Macdonald. MR 0105524.
  • Morris, Robert (1979). "The dilogarithm function of a real argument". Math. Comp. 33 (146): 778–787. doi:10.1090/S0025-5718-1979-0521291-X. MR 0521291.
  • Loxton, J. H. (1984). "Special values of the dilogarithm". Acta Arith. 18 (2): 155–166. doi:10.4064/aa-43-2-155-166. MR 0736728.
  • Kirillov, Anatol N. (1995). "Dilogarithm identities". Progress of Theoretical Physics Supplement. 118: 61–142. arXiv:hep-th/9408113. Bibcode:1995PThPS.118...61K. doi:10.1143/PTPS.118.61. S2CID 119177149.
  • Osacar, Carlos; Palacian, Jesus; Palacios, Manuel (1995). "Numerical evaluation of the dilogarithm of complex argument". Celest. Mech. Dyn. Astron. 62 (1): 93–98. Bibcode:1995CeMDA..62...93O. doi:10.1007/BF00692071. S2CID 121304484.
  • Zagier, Don (2007). "The Dilogarithm Function". In Pierre Cartier; Pierre Moussa; Bernard Julia; Pierre Vanhove (eds.). Frontiers in Number Theory, Physics, and Geometry II (PDF). pp. 3–65. doi:10.1007/978-3-540-30308-4_1. ISBN 978-3-540-30308-4.

Further reading

  • Bloch, Spencer J. (2000). Higher regulators, algebraic K-theory, and zeta functions of elliptic curves. CRM Monograph Series. Vol. 11. Providence, RI: American Mathematical Society. ISBN 0-8218-2114-8. Zbl 0958.19001.

External links

  • NIST Digital Library of Mathematical Functions: Dilogarithm
  • Weisstein, Eric W. "Dilogarithm". MathWorld.