Cyclical monotonicity

In mathematics, cyclical monotonicity is a generalization of the notion of monotonicity to the case of vector-valued function.[1][2]

Definition

Let , {\displaystyle \langle \cdot ,\cdot \rangle } denote the inner product on an inner product space X {\displaystyle X} and let U {\displaystyle U} be a nonempty subset of X {\displaystyle X} . A correspondence f : U X {\displaystyle f:U\rightrightarrows X} is called cyclically monotone if for every set of points x 1 , , x m + 1 U {\displaystyle x_{1},\dots ,x_{m+1}\in U} with x m + 1 = x 1 {\displaystyle x_{m+1}=x_{1}} it holds that k = 1 m x k + 1 , f ( x k + 1 ) f ( x k ) 0. {\displaystyle \sum _{k=1}^{m}\langle x_{k+1},f(x_{k+1})-f(x_{k})\rangle \geq 0.} [3]

Properties

  • For the case of scalar functions of one variable the definition above is equivalent to usual monotonicity.
  • Gradients of convex functions are cyclically monotone.
  • In fact, the converse is true.[4] Suppose U {\displaystyle U} is convex and f : U R n {\displaystyle f:U\rightrightarrows \mathbb {R} ^{n}} is a correspondence with nonempty values. Then if f {\displaystyle f} is cyclically monotone, there exists an upper semicontinuous convex function F : U R {\displaystyle F:U\to \mathbb {R} } such that f ( x ) F ( x ) {\displaystyle f(x)\subset \partial F(x)} for every x U {\displaystyle x\in U} , where F ( x ) {\displaystyle \partial F(x)} denotes the subgradient of F {\displaystyle F} at x {\displaystyle x} .[5]

See also

References

  1. ^ Levin, Vladimir (1 March 1999). "Abstract Cyclical Monotonicity and Monge Solutions for the General Monge–Kantorovich Problem". Set-Valued Analysis. 7. Germany: Springer Science+Business Media: 7–32. doi:10.1023/A:1008753021652. S2CID 115300375.
  2. ^ Beiglböck, Mathias (May 2015). "Cyclical monotonicity and the ergodic theorem". Ergodic Theory and Dynamical Systems. 35 (3). Cambridge University Press: 710–713. doi:10.1017/etds.2013.75. S2CID 122460441.
  3. ^ Chambers, Christopher P.; Echenique, Federico (2016). Revealed Preference Theory. Cambridge University Press. p. 9.
  4. ^ Rockafellar, R. Tyrrell, 1935- (2015-04-29). Convex analysis. Princeton, N.J. ISBN 9781400873173. OCLC 905969889.{{cite book}}: CS1 maint: location missing publisher (link) CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link)[page needed]
  5. ^ http://www.its.caltech.edu/~kcborder/Courses/Notes/CyclicalMonotonicity.pdf [bare URL PDF]