Convex space

In mathematics, a convex space (or barycentric algebra) is a space in which it is possible to take convex combinations of any sets of points.[1][2]

Formal Definition

A convex space can be defined as a set X {\displaystyle X} equipped with a binary convex combination operation c λ : X × X X {\displaystyle c_{\lambda }:X\times X\rightarrow X} for each λ [ 0 , 1 ] {\displaystyle \lambda \in [0,1]} satisfying:

  • c 0 ( x , y ) = x {\displaystyle c_{0}(x,y)=x}
  • c 1 ( x , y ) = y {\displaystyle c_{1}(x,y)=y}
  • c λ ( x , x ) = x {\displaystyle c_{\lambda }(x,x)=x}
  • c λ ( x , y ) = c 1 λ ( y , x ) {\displaystyle c_{\lambda }(x,y)=c_{1-\lambda }(y,x)}
  • c λ ( x , c μ ( y , z ) ) = c λ μ ( c λ ( 1 μ ) 1 λ μ ( x , y ) , z ) {\displaystyle c_{\lambda }(x,c_{\mu }(y,z))=c_{\lambda \mu }\left(c_{\frac {\lambda (1-\mu )}{1-\lambda \mu }}(x,y),z\right)} (for λ μ 1 {\displaystyle \lambda \mu \neq 1} )

From this, it is possible to define an n-ary convex combination operation, parametrised by an n-tuple ( λ 1 , , λ n ) {\displaystyle (\lambda _{1},\dots ,\lambda _{n})} , where i λ i = 1 {\displaystyle \sum _{i}\lambda _{i}=1} .

Examples

Any real affine space is a convex space. More generally, any convex subset of a real affine space is a convex space.

History

Convex spaces have been independently invented many times and given different names, dating back at least to Stone (1949).[3] They were also studied by Neumann (1970)[4] and Świrszcz (1974),[5] among others.

References

  1. ^ "Convex space". nLab. Retrieved 3 April 2023.
  2. ^ Fritz, Tobias (2009). "Convex Spaces I: Definition and Examples". arXiv:0903.5522 [math.MG].
  3. ^ Stone, Marshall Harvey (1949). "Postulates for the barycentric calculus". Annali di Matematica Pura ed Applicata. 29: 25–30. doi:10.1007/BF02413910. S2CID 122252152.
  4. ^ Neumann, Walter David (1970). "On the quasivariety of convex subsets of affine spaces". Archiv der Mathematik. 21: 11–16. doi:10.1007/BF01220869. S2CID 124051153.
  5. ^ Świrszcz, Tadeusz (1974). "Monadic functors and convexity". Bulletin l'Académie Polonaise des Science, Série des Sciences Mathématiques, Astronomiques et Physiques. 22: 39–42.