Classical Lie algebras

The classical Lie algebras are finite-dimensional Lie algebras over a field which can be classified into four types A n {\displaystyle A_{n}} , B n {\displaystyle B_{n}} , C n {\displaystyle C_{n}} and D n {\displaystyle D_{n}} , where for g l ( n ) {\displaystyle {\mathfrak {gl}}(n)} the general linear Lie algebra and I n {\displaystyle I_{n}} the n × n {\displaystyle n\times n} identity matrix:

  • A n := s l ( n + 1 ) = { x g l ( n + 1 ) : tr ( x ) = 0 } {\displaystyle A_{n}:={\mathfrak {sl}}(n+1)=\{x\in {\mathfrak {gl}}(n+1):{\text{tr}}(x)=0\}} , the special linear Lie algebra;
  • B n := s o ( 2 n + 1 ) = { x g l ( 2 n + 1 ) : x + x T = 0 } {\displaystyle B_{n}:={\mathfrak {so}}(2n+1)=\{x\in {\mathfrak {gl}}(2n+1):x+x^{T}=0\}} , the odd-dimensional orthogonal Lie algebra;
  • C n := s p ( 2 n ) = { x g l ( 2 n ) : J n x + x T J n = 0 , J n = ( 0 I n I n 0 ) } {\displaystyle C_{n}:={\mathfrak {sp}}(2n)=\{x\in {\mathfrak {gl}}(2n):J_{n}x+x^{T}J_{n}=0,J_{n}={\begin{pmatrix}0&I_{n}\\-I_{n}&0\end{pmatrix}}\}} , the symplectic Lie algebra; and
  • D n := s o ( 2 n ) = { x g l ( 2 n ) : x + x T = 0 } {\displaystyle D_{n}:={\mathfrak {so}}(2n)=\{x\in {\mathfrak {gl}}(2n):x+x^{T}=0\}} , the even-dimensional orthogonal Lie algebra.

Except for the low-dimensional cases D 1 = s o ( 2 ) {\displaystyle D_{1}={\mathfrak {so}}(2)} and D 2 = s o ( 4 ) {\displaystyle D_{2}={\mathfrak {so}}(4)} , the classical Lie algebras are simple.[1][2]

The Moyal algebra is an infinite-dimensional Lie algebra that contains all classical Lie algebras as subalgebras.

See also

  • Simple Lie algebra
  • Classical group

References

  1. ^ Antonino, Sciarrino; Paul, Sorba (2000-01-01). Dictionary on Lie algebras and superalgebras. Academic Press. ISBN 9780122653407. OCLC 468609320.
  2. ^ Sthanumoorthy, Neelacanta (18 April 2016). Introduction to finite and infinite dimensional lie (super)algebras. Amsterdam Elsevie. ISBN 9780128046753. OCLC 952065417.