Cheeger bound

In mathematics, the Cheeger bound is a bound of the second largest eigenvalue of the transition matrix of a finite-state, discrete-time, reversible stationary Markov chain. It can be seen as a special case of Cheeger inequalities in expander graphs.

Let X {\displaystyle X} be a finite set and let K ( x , y ) {\displaystyle K(x,y)} be the transition probability for a reversible Markov chain on X {\displaystyle X} . Assume this chain has stationary distribution π {\displaystyle \pi } .

Define

Q ( x , y ) = π ( x ) K ( x , y ) {\displaystyle Q(x,y)=\pi (x)K(x,y)}

and for A , B X {\displaystyle A,B\subset X} define

Q ( A × B ) = x A , y B Q ( x , y ) . {\displaystyle Q(A\times B)=\sum _{x\in A,y\in B}Q(x,y).}

Define the constant Φ {\displaystyle \Phi } as

Φ = min S X , π ( S ) 1 2 Q ( S × S c ) π ( S ) . {\displaystyle \Phi =\min _{S\subset X,\pi (S)\leq {\frac {1}{2}}}{\frac {Q(S\times S^{c})}{\pi (S)}}.}

The operator K , {\displaystyle K,} acting on the space of functions from | X | {\displaystyle |X|} to R {\displaystyle \mathbb {R} } , defined by

( K ϕ ) ( x ) = y K ( x , y ) ϕ ( y ) {\displaystyle (K\phi )(x)=\sum _{y}K(x,y)\phi (y)}

has eigenvalues λ 1 λ 2 λ n {\displaystyle \lambda _{1}\geq \lambda _{2}\geq \cdots \geq \lambda _{n}} . It is known that λ 1 = 1 {\displaystyle \lambda _{1}=1} . The Cheeger bound is a bound on the second largest eigenvalue λ 2 {\displaystyle \lambda _{2}} .

Theorem (Cheeger bound):

1 2 Φ λ 2 1 Φ 2 2 . {\displaystyle 1-2\Phi \leq \lambda _{2}\leq 1-{\frac {\Phi ^{2}}{2}}.}

See also

  • Stochastic matrix
  • Cheeger constant
  • Conductance

References

  • Cheeger, Jeff (1971). "A Lower Bound for the Smallest Eigenvalue of the Laplacian". Problems in Analysis: A Symposium in Honor of Salomon Bochner (PMS-31). Princeton University Press. pp. 195–200. doi:10.1515/9781400869312-013. ISBN 978-1-4008-6931-2.
  • Diaconis, Persi; Stroock, Daniel (1991). "Geometric Bounds for Eigenvalues of Markov Chains". The Annals of Applied Probability. 1 (1). Institute of Mathematical Statistics: 36–61. ISSN 1050-5164. JSTOR 2959624. Retrieved 2024-04-14.


  • v
  • t
  • e