Bessel potential

In mathematics, the Bessel potential is a potential (named after Friedrich Wilhelm Bessel) similar to the Riesz potential but with better decay properties at infinity.

If s is a complex number with positive real part then the Bessel potential of order s is the operator

( I Δ ) s / 2 {\displaystyle (I-\Delta )^{-s/2}}

where Δ is the Laplace operator and the fractional power is defined using Fourier transforms.

Yukawa potentials are particular cases of Bessel potentials for s = 2 {\displaystyle s=2} in the 3-dimensional space.

Representation in Fourier space

The Bessel potential acts by multiplication on the Fourier transforms: for each ξ R d {\displaystyle \xi \in \mathbb {R} ^{d}}

F ( ( I Δ ) s / 2 u ) ( ξ ) = F u ( ξ ) ( 1 + 4 π 2 | ξ | 2 ) s / 2 . {\displaystyle {\mathcal {F}}((I-\Delta )^{-s/2}u)(\xi )={\frac {{\mathcal {F}}u(\xi )}{(1+4\pi ^{2}\vert \xi \vert ^{2})^{s/2}}}.}

Integral representations

When s > 0 {\displaystyle s>0} , the Bessel potential on R d {\displaystyle \mathbb {R} ^{d}} can be represented by

( I Δ ) s / 2 u = G s u , {\displaystyle (I-\Delta )^{-s/2}u=G_{s}\ast u,}

where the Bessel kernel G s {\displaystyle G_{s}} is defined for x R d { 0 } {\displaystyle x\in \mathbb {R} ^{d}\setminus \{0\}} by the integral formula [1]

G s ( x ) = 1 ( 4 π ) s / 2 Γ ( s / 2 ) 0 e π | x | 2 y y 4 π y 1 + d s 2 d y . {\displaystyle G_{s}(x)={\frac {1}{(4\pi )^{s/2}\Gamma (s/2)}}\int _{0}^{\infty }{\frac {e^{-{\frac {\pi \vert x\vert ^{2}}{y}}-{\frac {y}{4\pi }}}}{y^{1+{\frac {d-s}{2}}}}}\,\mathrm {d} y.}

Here Γ {\displaystyle \Gamma } denotes the Gamma function. The Bessel kernel can also be represented for x R d { 0 } {\displaystyle x\in \mathbb {R} ^{d}\setminus \{0\}} by[2]

G s ( x ) = e | x | ( 2 π ) d 1 2 2 s 2 Γ ( s 2 ) Γ ( d s + 1 2 ) 0 e | x | t ( t + t 2 2 ) d s 1 2 d t . {\displaystyle G_{s}(x)={\frac {e^{-\vert x\vert }}{(2\pi )^{\frac {d-1}{2}}2^{\frac {s}{2}}\Gamma ({\frac {s}{2}})\Gamma ({\frac {d-s+1}{2}})}}\int _{0}^{\infty }e^{-\vert x\vert t}{\Big (}t+{\frac {t^{2}}{2}}{\Big )}^{\frac {d-s-1}{2}}\,\mathrm {d} t.}

This last expression can be more succinctly written in terms of a modified Bessel function,[3] for which the potential gets its name:

G s ( x ) = 1 2 ( s 2 ) / 2 ( 2 π ) d / 2 Γ ( s 2 ) K ( d s ) / 2 ( | x | ) | x | ( s d ) / 2 . {\displaystyle G_{s}(x)={\frac {1}{2^{(s-2)/2}(2\pi )^{d/2}\Gamma ({\frac {s}{2}})}}K_{(d-s)/2}(\vert x\vert )\vert x\vert ^{(s-d)/2}.}

Asymptotics

At the origin, one has as | x | 0 {\displaystyle \vert x\vert \to 0} ,[4]

G s ( x ) = Γ ( d s 2 ) 2 s π s / 2 | x | d s ( 1 + o ( 1 ) )  if  0 < s < d , {\displaystyle G_{s}(x)={\frac {\Gamma ({\frac {d-s}{2}})}{2^{s}\pi ^{s/2}\vert x\vert ^{d-s}}}(1+o(1))\quad {\text{ if }}0<s<d,}
G d ( x ) = 1 2 d 1 π d / 2 ln 1 | x | ( 1 + o ( 1 ) ) , {\displaystyle G_{d}(x)={\frac {1}{2^{d-1}\pi ^{d/2}}}\ln {\frac {1}{\vert x\vert }}(1+o(1)),}
G s ( x ) = Γ ( s d 2 ) 2 s π s / 2 ( 1 + o ( 1 ) )  if  s > d . {\displaystyle G_{s}(x)={\frac {\Gamma ({\frac {s-d}{2}})}{2^{s}\pi ^{s/2}}}(1+o(1))\quad {\text{ if }}s>d.}

In particular, when 0 < s < d {\displaystyle 0<s<d} the Bessel potential behaves asymptotically as the Riesz potential.

At infinity, one has, as | x | {\displaystyle \vert x\vert \to \infty } , [5]

G s ( x ) = e | x | 2 d + s 1 2 π d 1 2 Γ ( s 2 ) | x | d + 1 s 2 ( 1 + o ( 1 ) ) . {\displaystyle G_{s}(x)={\frac {e^{-\vert x\vert }}{2^{\frac {d+s-1}{2}}\pi ^{\frac {d-1}{2}}\Gamma ({\frac {s}{2}})\vert x\vert ^{\frac {d+1-s}{2}}}}(1+o(1)).}

See also

  • Riesz potential
  • Fractional integration
  • Sobolev space
  • Fractional Schrödinger equation
  • Yukawa potential

References

  1. ^ Stein, Elias (1970). Singular integrals and differentiability properties of functions. Princeton University Press. Chapter V eq. (26). ISBN 0-691-08079-8.
  2. ^ N. Aronszajn; K. T. Smith (1961). "Theory of Bessel potentials I". Ann. Inst. Fourier. 11. 385–475, (4,2). doi:10.5802/aif.116.
  3. ^ N. Aronszajn; K. T. Smith (1961). "Theory of Bessel potentials I". Ann. Inst. Fourier. 11. 385–475. doi:10.5802/aif.116.
  4. ^ N. Aronszajn; K. T. Smith (1961). "Theory of Bessel potentials I". Ann. Inst. Fourier. 11. 385–475, (4,3). doi:10.5802/aif.116.
  5. ^ N. Aronszajn; K. T. Smith (1961). "Theory of Bessel potentials I". Ann. Inst. Fourier. 11: 385–475. doi:10.5802/aif.116.
  • Duduchava, R. (2001) [1994], "Bessel potential operator", Encyclopedia of Mathematics, EMS Press
  • Grafakos, Loukas (2009), Modern Fourier analysis, Graduate Texts in Mathematics, vol. 250 (2nd ed.), Berlin, New York: Springer-Verlag, doi:10.1007/978-0-387-09434-2, ISBN 978-0-387-09433-5, MR 2463316, S2CID 117771953
  • Hedberg, L.I. (2001) [1994], "Bessel potential space", Encyclopedia of Mathematics, EMS Press
  • Solomentsev, E.D. (2001) [1994], "Bessel potential", Encyclopedia of Mathematics, EMS Press
  • Stein, Elias (1970), Singular integrals and differentiability properties of functions, Princeton, NJ: Princeton University Press, ISBN 0-691-08079-8